SPECIFICATION

PART NO.: TOD9M0053-Y-E-V2

This specification maybe changed without any notice in order to improve performance or quality etc.

Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRU	ILY ®信利	Customer	
Written by	Hujiabin	App	roved by
Checked by	Zhangweicang		
Approved by	Sujunhai		

REVISION HISTORY

0.0 Preliminary	Date
	2008-7-30

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	1.6	Inch
2	Resolution	128(H) x 64(V)	Lines
3	Active Area	36.45 (W) x 18.21(H)	mm
4	Outline Dimension (Panel)	46.83 (W) x 28.77(H)	mm
5	Pixel Pitch	0.285 (W) x 0.285 (H)	mm
6	Pixel Size	0.255 W) x 0.255(H)	mm
7	Driver IC	SSD1325T6R1	-
8	Display Color	Yellow	-
9	Grayscale	4	Bit
10	Interface	Serial I/F	-
11	IC package type	TCP with ZIF tail	-
12	Glass Thickness	2.1±0.1	mm
13	Weight	TBD	g
14	Duty	1/64	-

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$


 $(Ta = 25^{\circ}C)$

Ite	ems	Symbol	Min	Тур.	Max	Unit
Supply	Logic	$V_{ m DD}$	-0.3	-	4.0	V
Voltage	Driving	V_{CC}	0	-	17.0	V
Operating Temperatur	re	Тор	-20	-	70	$^{\circ}$
Storage Te	mperature	Tst	-30	-	80	${\mathbb C}$
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if **ABSOLUTE MAXIMUM RATINGS** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSIONS

■ ELECTRICAL CHARACTERISTICS

♦DC Characteristics

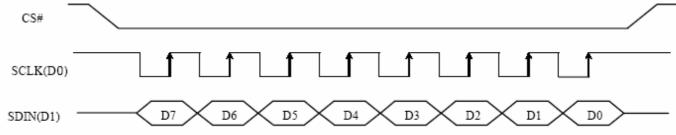
Unless otherwise specified, $V_{SS} = 0V$, $V_{DD} = 2.4V$ to 3.5V (Ta = 25°C)

	Items	Symbol	Min	Typ.	Max	Unit
Supply	Logic	$V_{ m DD}$	2.4	3.0	3.5	V
Voltage	Operating	V_{CC}	8.0	13.0	16.0	V
Input	High Voltage	V_{IH}	$0.8 \times V_{DD}$	-	$ m V_{DD}$	V
Voltage	Low Voltage	V_{IL}	V_{SS}	-	$0.2 \times V_{DD}$	V
Output	High Voltage	V_{OH}	0.9 x V _{DD}	-	$V_{ m DD}$	V
Voltage	Low Voltage	V_{OL}	V_{SS}	-	0.1 x V _{DD}	V

♦AC Characteristics

Use Serial Interface

Conditions:


$$V_{DD} \sim V_{SS} = 2.4 \text{ to } 3.5 \text{V}$$

 $T_A = 25 ^{\circ}\text{C}$

Serial Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t _{AH}	Address Hold Time	150	-	-	ns
t _{CSS}	Chip Select Setup Time	120	-	-	ns
t _{CSH}	Chip Select Hold Time	60	-	-	ns
t_{DSW}	Write Data Setup Time	100	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	100	-	-	ns
t _{CLKL}	Clock Low Time	100	-	-	ns
t _{CLKH}	Clock High Time	100	-	-	ns
t _R	Rise Time	-	-	15	ns
tF	Fall Time	-	-	15	ns

Serial interface characteristics

■ TIMING OF POWER SUPPLY

The following figures illustrate the recommended power ON and power OFF sequence of SSD1325. Power ON sequence:

- Power ON V_{DD}
- 2. After VDD become stable, set RES# pin LOW (logic LOW) for at least 3us (t1) and then HIGH (logic HIGH).
- After set RES# pin LOW (logic LOW), wait for at least 3us (t2). Then Power ON VCC.
- 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (t_{AF}) .

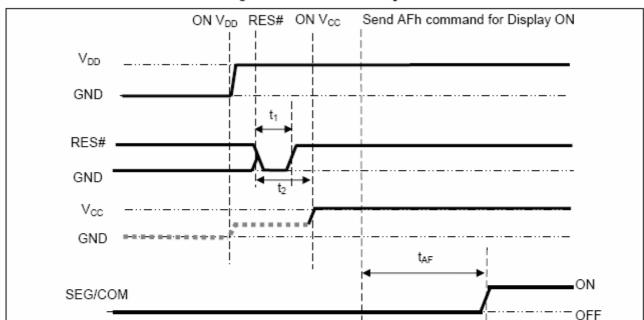


Figure 1 : The Power ON sequence

Power OFF sequence:

- Send command AEh for display OFF.
- 2. Wait until panel discharges completely. 3. Power OFF $V_{\text{CC.}}^{(1),\,(2)}$
- Wait for t_{OFF}. Power OFF V_{DD}. (where Minimum t_{OFF}=0ms, Typical t_{OFF}=100ms)

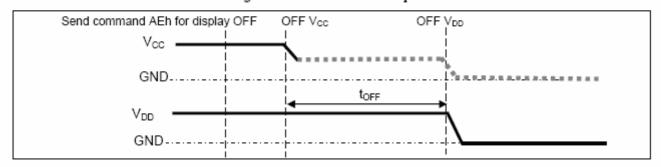


Figure 2: The Power OFF sequence

Note:

 $^{(1)}$ Since an ESD protection circuit is connected between V_{DD} and V_{CC} , V_{CC} becomes lower than V_{DD} whenever V_{DD} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 1 and Figure 2.

(2) VCC should be kept float when it is OFF.

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items		Symbol	Min.	Typ.	Max.	Unit	Remark	
Operating Lun	ninance	L	70	80*	-	cd/m^2	Yellow	
Power Consur	nntion	Р		80	100	mW	30% pixels ON	
Fower Consur	приоп	Г	ı	80	100	III VV	L=80cd/m ²	
Frame Frequ	ency	Fr	•	100	-	Hz		
Color Coordinate	YELLOW	CIE x	0.41	0.46	0.51	CIE1931	Darkroom	
Color Coordinate	TELLOW	CIE y	0.46	0.51	0.56	CIE1931	Darktooni	
Dagnanga Tima	Rise	Tr	1	ı	0.02	ms	-	
Response Time	Decay	Td	-	-	0.02	ms	-	
Contrast Ra	tio*	Cr	10000:1	-	-		Darkroom	
Viewing Angle U	niformity	Δθ	160	-	-	Degree	-	
Operating Life	Time*	Тор	100,000	1	-	Hours	L=80cd/m ²	

Note:

- 1. **80cd/m²** is base on V_{DD}=3.0V, V_{cc}=13.0V, contrast command setting 0x40;
- 2. Contrast ratio is defined as follows:

Contrast ratio = Photo – detector output with OLED being "white"

Photo – detector output with OLED being "black"

3. **Life Time** is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (30% pixels scrolling display on)

(The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description						
1	CS#	The chip select pin. Low is enabled						
2	RES#	This pin is reset signal input						
3	BS1	Set to low or connected to VSS						
4	D/C#	Data/Command data control pin						
5	W/R#	Tie Low						
6	E/RD#	Tie Low						
7	D0	Serial Clock input (SCLK)						
8	D1	Serial Data input (SDIN)						
9	D2	Should be left open						
10	D3	Tie Low						
11	D4	Tie Low						
12	D5	Tie Low						
13	D6	Tie Low						
14	D7	Tie Low						
15	NC	No connecting						
16	VDD	Logic voltage supply for IC						
17	VCC	High voltage supply for OLED panel						
18	VSS	Ground						

■ COMMAND TABLE

(D/C# = 0, R/W# (WR#) = 0, E (RD#) = 1) unless specific setting is stated

·	amental		_		_	_	<i>D#</i>)	1,	- AIIIC	ess specific setting is st	
D/C							D2	ъı	DΛ	Command	Description
\vdash		0	0		_	-	-	-			-
0	15 A[5:0]	*	*	0	1	0	1 A ₂	0		Set Column Address	Second command A[5:0] sets the column start address from 0-63, POR = 00h
0	B[5:0]	*	*				B ₂				Third command B[5:0] sets the column end address
ľ	D[3.0]			25	24	ъ,	2	<i>D</i> 1	D ₀		from 0-63, RESET = 3Fh
											-
0	75	0	1	1	1	0	1	0		Set Row address	Second command A[6:0]sets the row start address from
0	A[6:0]	*					A_2				0-79, RESET = 00h
0	B[6:0]	*	B ₆	B ₅	B ₄	B ₃	B_2	B_1	B ₀		Third command B[6:0] sets the row end address from 0- 79, RESET = 4Fh
											79, RESE1 - 4FII
0	81	1	0	0	0	0	0	0	1	Set Contrast Current	Double byte command to select 1 out of 128 contrast
0	A[6:0]	*	A_6	A5	A_4	A3	A_2	A_1	A_0		steps. Contrast increases as level increase
						-	-				The level is set to 40h after RESET
0	84~86	1	0	0	0	0	1	X_1	X_0	Set Current Range	84h = Quarter Current Range (RESET)
											85h = Half Current Range
											86h = Full Current Range
0	A0	1	0	1	0	0	0	0	0	Set Re-map	A[0]=0, Disable Column Address Re-map (RESET)
0	A[6:0]	*	A_6	A5	A ₄	A3	A_2	Aı	A_0		A[0]=1, Enable Column Address Re-map
											AIII-O Disable Nibble Be asset (BECET)
											A[1]=0, Disable Nibble Re-map (RESET) A[1]=1, Enable Nibble Re-map
											A[1]-1, Enable Nibble Re-map
											A[2]=0, Horizontal Address Increment (RESET)
											A[2]=1, Vertical Address Increment
											A[4]=0, Disable COM Re-map disable (RESET)
											A[4]=1, Enable COM Re-map
											A[5]=0, Reserved (RESET)
											A[5]=1, Reserved
											AND A DE AL CONTO DE CALE.
											A[6]=0, Disable COM Split Odd Even (RESET)
											A[6]=1, Enable COM Split Odd Even
0	A 1	1	0	1	0	0	0	0	1	Sat Display Start I im-	Sat display PAM display start line or sixty from 0.70
0	A1 A[6:0]	*	0 Δ.	1 Δ.	_	-	A ₂	0 Δ,	1 4.	Set Display Start Line	Set display RAM display start line register from 0-79 Display start line register is reset to 00h after RESET
"	A[U.U]		7-6	Α5	71.4	A3	A2	Αl	Α0		
0	A2	1	0	1	0	0	0	1	0	Set Display Offset	Set vertical scroll by COM from 0-79
0	A[6:0]	*	- 1	- 1	1	-	A ₂	A_1		Panj	The value is reset to 00H after RESET
	r1		-0						-0		
0	A4~A7	1	0	1	0	0	X_2	X_1	X_0	Set Display Mode	A4h = Normal Display (RESET)
											A5h = Entire Display ON,

D/C	Hex	$\mathbf{D7}$	D 6	D 5	D4	D3	D2	D1	$\mathbf{D}0$	Command	Description
											all pixels turns ON in GS level 15
											A6h = Entire Display OFF, all pixels turns OFF
											A7h = Inverse Display
0	A8 A[6:0]	1	0 A ₆	1 A ₅	0 A ₄	1 A ₃	0 A ₂	0 A ₁	ı	Set Multiplex Ratio	The next command determines multiplex ratio N from 16MUX-80MUX, A[6:0] = 15 represents 16MUX
											A[6:0] = 16 represents 17MUX : A[6:0] = 78 represents 79MUX A[6:0] = 79 represents 80MUX
0	AD A[1:0]	1	0	1 *	0	1 *	1 *	0	1 A ₀	Set Master Configuration	A[0] = 0, Select external V _{CC} supply A[0] = 1, Reserved (RESET)
											Note (1) Bit A[0] must be set to 0b after RESET. (2) The setting will be activated after issuing Set Displa ON command (AFh)
0	AE	1	0	1	0	1	1	1	0	Set Display ON	AEh = Display OFF (Sleep mode) (RESET)
0	AF	1	0	1	0	1	1	1	1	Set Display OFF	AFh = Display ON
0	В0	1	0	1	1	0	0	0	0	Set Pre-charge Compensation Enable	A[5:0] = 08h (RESET)
0	A[5:0]	*	*	A5	A4	A3	A ₂	Aı	A ₀	•	A[5:0] = 28h, Enable pre-charge compensation
0	B1 A[3:0]	1	0	1	1	0	0 A ₂	0 Δ.	ı	Set Phase Length	A[3:0] = P1, phase 1 period of 1-15 DCLKs, RESET = 3DCLKS = 3h
0	A[7:4]		A_6	A5	A_4		*	*	*		A[7:4] = P2, phase 2 period of 1-15 DCLKs, RESET = 5DCLKS = 5h
											Note ⁽¹⁾ 0 DCLK is invalid in phase 1 & phase 2
0	B2 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁		Set Row Period (set frame frequency)	The next command sets the number of DCLKs, K, per row between 2-158 DCLKS RESET = 37DCLKS = 25h The K value should be set as K = P1+P2+GS15 pulse width (RESET: 3+5+29DCLKS)
0	B3 A[3:0]	1	0	1 *	1 *	0 A ₃	0 A ₂	1 A ₁	A_0	Set Display Clock Divide Ratio /	The lower nibble (A[3:0]) of the next command define the divide ratio (D) of display clock (DCLK)
0	A[7:4]	A7	A ₆	A5	A4	*	*	*		Oscillator Frequency	Divide ratio (D)=A[3:0]+1 (A[3:0]RESET is 0001b, i.e. divide ratio (D) = 2)

he Oscillator Frequency Oscillator Freque	Fund	lamental	Co	mm	and	Tab	ole					
he Oscillator Frequency increases with the value of Analysis angle: 0000b-1111b RESET = 0100b represents 655KHz, hypical step value: 5% of previous value A[2:0] = A[2:0] = 0 A[2:0] = A[2:0] = A[2:0] = 0 A[2:0] = A[2:0]	D/C	Hex	D 7	D 6	D 5	D4	D3	D2	D1	$\mathbf{D}0$	Command	Description
O A[2:0] * * * * * * * A_2 A_1 A_0 Compensation Level A[2:0] = 3h, Recommended level												Oscillator Frequency increases with the value of A[7:4] and vice versa Range: 0000b~1111b RESET= 0100b represents 655KHz,
O A[2:0] * * * * * * * A_2 A_1 A_0 Compensation Level A[2:0] = 3h, Recommended level	0	B/I	1	0	1	1	0	1	0	0	Set Pre charge	$\Delta(2.0) = 0 \text{ (RESET)}$
O A[2:0]	_		- 1	-	-	-	-	_	_	I	_	
Revel A A A A A A A A A	0 0 0 0 0 0 0 0 0 0	A[2:0] B[2:0] B[6:4] C[2:0] C[6:4] D[6:4] E[2:0] E[6:4] F[2:0] F[6:4] G[2:0] H[2:0]	* * * * * * * * * * * *	* * B6 * C6 * D6 * F6 * G6 *	* * B5 * C5 * D5 * F5 * G5 *	* * B4 * C4 * D4 * E4 * F4 * G4 *	* * * * * * * * * *	A ₂ B ₂ * C ₂ * D ₂ * F ₂ * F ₂ * H ₂	A ₁ B ₁ * C ₁ * E ₁ * F ₁ * H ₁	A ₀ B ₀ * C ₀ * E ₀ * F ₀ * H ₀	Set Gray Scale Table	A[2:0] = Gray scale level of GS1, RESET=1 B[2:0] = Gray scale level of GS2, RESET=1 B[6:4] = Gray scale level of GS3, RESET=1 C[2:0] = Gray scale level of GS4 RESET=1 C[6:4] = Gray scale level of GS5, RESET=1 D[2:0] = Gray scale level of GS6, RESET=1 D[6:4] = Gray scale level of GS7, RESET=1 E[2:0] = Gray scale level of GS8, RESET=1 E[6:4] = Gray scale level of GS8, RESET=1 E[6:4] = Gray scale level of GS9, RESET=1 F[2:0] = Gray scale level of GS10, RESET=1 F[6:4] = Gray scale level of GS11, RESET=1 G[2:0] = Gray scale level of GS12, RESET=1 G[6:4] = Gray scale level of GS13, RESET=1 H[2:0] = Gray scale level of GS14, RESET=1
Revel A A A A A A A A A												
O A[4:0] * * * O A4 A3 A2 A1 A0 A[4:0] 00000 0.51*V _{REF} 00001 0.52* V _{REF} 00001 0.52* V _{REF} 11110 0.81* V _{REF} (RESET) 11110 0.82* V _{REF} 11111 0.84* V _{REF} 11111 0.84* V _{REF} 00001 0.52* V _{REF} 11111 0.84* V _{REF} 11111 0.84* V _{REF} 11111 0.84* V _{REF} 00001 0.52* V _{REF} 11111 0.84* V _{REF} 11111 0.84* V _{REF} 11111 0.84* V _{REF} 00001 0.52* V _{REF} 11110 0.81* V _{REF} 11110 0.81* V _{REF} 11110 0.81* V _{REF} 00001 0.52* V _{REF} 11110 0.81* V			_	1 -	I -	_	1 -	_	_	1 -	Set Precharge Voltage	level, A[7:0] 1xxxxxxx connects to V _{COMH} (RESET) 001xxxxx 1.0 * V _{REF} 00000000 0.51* V _{REF} 00000001 0.52* V _{REF}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	I -	ı -	1 -	I -	I - I		Set V _{COMH} Voltage	
0 A[3:0] * * * * A ₃ A ₂ A ₁ A ₀ Voltage (VSL) follow: A[3:0] = 0010 kept VSL pin NC A[3:0] = 1110 (RESET) connect a capacitor between VSL pin and V_{SS}												 11101 0.81* V _{REF} (RESET) 11110 0.82* V _{REF}
0 F3 1 1 1 0 0 0 1 1 NOP Comment for No Operation			-	-	-	-				1 A ₀	Set Segment Low Voltage (VSL)	A[3:0] = 0010 kept VSL pin NC A[3:0] = 1110 (RESET) connect a capacitor between
I U I E S I I I I I I I U I U I U I I I I I I I	0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation

■ INITIALIZATION CODE

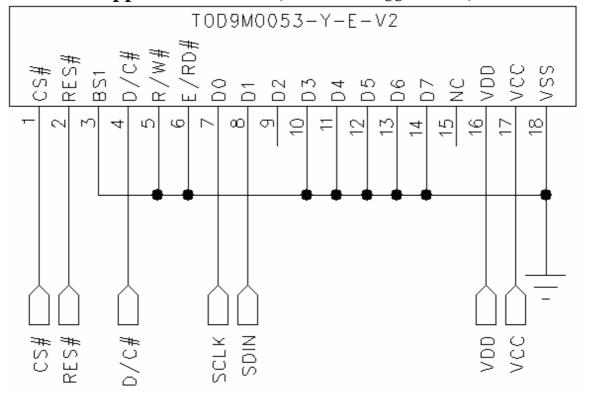
```
Void init oled()
  W COMMAND(0x15); //SET COLUMN ADDRESS
   W COMMAND(0x00);
   W COMMAND(0x3F);
   W COMMAND(0x75); //SET ROW ADDRESS
   W COMMAND(0x00);
   W COMMAND(0x3F);
   W COMMAND(0x81); //SET CONTRAST CURRENT
   W COMMAND(0x40);
  W COMMAND(0x86); //SET CURRENT RANGE
  W COMMAND(0xA0); //SET RE MAP
   W COMMAND(0x52);
  W COMMAND(0xA1); //SET DISPLAY START LINE
  W COMMAND(0x00);
  W COMMAND(0xA2); //SET DISPLAY OFFSET
  W COMMAND(0x40);
  W COMMAND(0xA4); //SET DISPLAY MODE(A4:NORMAL,A5:ENTIRE ON,A6:ENTIRE
                         OFF, A7: INVERSE)
  W COMMAND(0xA8); //SET MULTIPLEX RATIO
   W COMMAND(0x3F); //16--80
  W COMMAND(0xAD); //SET MASTER CONFIGURATION
   W COMMAND(0x02); //select external vcc supply
  W COMMAND(0xB0); //SET PRE-CHARGE COMPENSATION ENABLE
   W COMMAND(0x28); //28,ENABLE PRE-CHARGE COMPENSATION
   W COMMAND(0xB1); //SET PHASE LENGTH
   W COMMAND(0x23);
   W COMMAND(0xB2); //SET ROW PERIOD(FRAME FREQUENCY)
   W COMMAND(0x46); //K=P1+P2+GS15 PULSE WIDTH
  W COMMAND(0xB3); //SET DISPLAY CLOCK DIVIDE RATIO/OSCILLATOR FREQUENCY
   W COMMAND(0x40); \frac{1}{655}KHz,D=2
   W COMMAND(0xB4); //SET PRE-CHARGE COMPENSATION LEVEL
   W COMMAND(0x03);
   W COMMAND(0xB8); //SET GRAY SCALE TABLE
   W COMMAND(0x01); //GS1
   W COMMAND(0x11); //GS3GS2
   W COMMAND(0x22); //GS5GS4
```

```
W_COMMAND(0x32); //GS7GS6
W_COMMAND(0x43); //GS9GS8
W_COMMAND(0x54); //GS11GS10
W_COMMAND(0x65); //GS13GS12
W_COMMAND(0x76); //GS15GS14

W_COMMAND(0xBC); //SET PRE-CHARGE VOLTAGE
W_COMMAND(0x1F);

W_COMMAND(0xBE); //SET VCOMH VOLTAGE
W_COMMAND(0x13);

W_COMMAND(0xBF); //SET SEGMENT LOW VOLTAGE(VSL)
W_COMMAND(0x0E);


W_COMMAND(0x0E); //DISPLAY ON
```

}

■ SCHEMATIC EXAMPLE

lacktriangleSerial Interface Application Circuit(External V_{CC} =13.0V):

NOTE:

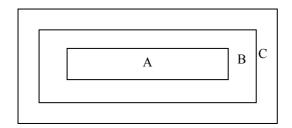
- Pins connected to external Power supply: VDD, VCC; 1,
- 2、 In serial interface mode, the read function is not allowed.

■ RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 			
High Ter	mperature Operating (HTO)	70±2°C, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.			
Low Te	emperature Storage (LTS)	-30±2°C, 200 hours	4. After testing, the change for the mono and area color must be within (+/-0.02, +/-			
Low Ten	nperature Operating (LTO)	-20±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on			
High Tempe	erature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	1931 CIE coordinates. 5. After testing, the change of total current consumption should be			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.				
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic and the electrical defects				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■OUTGOING QUALITY CONTROL SPECIFICATION

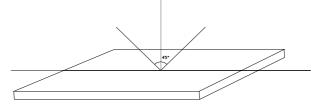
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25 ± 5 °C.

♦Inspection Criteria

1 Major defect : AQL= 0.65

Item	Criterion	
	1. No display or abnormal display is not accepted	
Function Defect	2. Open or short is not accepted.	
	3. Power consumption exceeding the spec is not accepted.	
Outline Dimension	Outline dimension exceeding the spec is not accepted.	
Glass Crack	Glass crack tends to enlarge is not accepted.	

2 Minor Defect : AQL= 1.5

TRULY ®信利 TRULY SEMICONDUCTORS LTD.

Item	Criterion						
Spot Defect (dimming and lighting spot)	Size (mm)		Accepted Qty				
			Area A + Area B	Area C			
		Φ≦0.10	Ignored				
	Y	0.10<Φ≤0.15	3	Ignored			
		0.15<Φ≦0.20	1				
		0.20<⊕	0				
	Note: $\Phi = (x + y) / 2$						
Line Defect (dimming and lighting	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
	/	W ≤ 0.03	Ignored				
	L≦3.0	$0.03 < W \le 0.05$	2				
	L≦2.0	$0.05 < W \le 0.08$	1	Ignored			
line)	/	0.08 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect				
Remarks: The total of spot defect and line defect shall not exceed 4 pcs.							
Polarizer	Stain which can be wiped off lightly with a soft cloth or similar						
Stain	cleaning is accepted, otherwise, according to the Spot Defect and the Line Defect.						
Polarizer Scratch	1. If scratch can be seen during operation, according to the criterions						
	of the Spot Defect and the Line Defect.						
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:						
	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
		W ≤ 0.03	Ignore				
	5.0 <l≦10.0< td=""><td>$0.03 < W \le 0.05$</td><td>2</td><td></td></l≦10.0<>	$0.03 < W \le 0.05$	2				
	L≦5.0	$0.05 < W \le 0.08$	1	Ignore			
	/	0.08 <w< td=""><td>0</td><td></td></w<>	0				
Polarizer Air Bubble	Size		Area A + Area B	Area C			
		Φ≦0.20	Ignored				
		$0.20 < \Phi \leq 0.50$	2				
	X	$0.50 < \Phi \le 0.80$	1	Ignored			
		0.80<Ф	0				

F					
	1. On the corner	(mm)			
		X	≤ 2.0		
		y	\leq S		
	+	Z	≤ t		
Glass Defect (Glass Chiped)	z				
	2. On the bonding edge				
		(mm)			
	12	X	≤ a / 2		
		у	≤ s / 3		
		Z	≤ t		
	The state of the s				
	3. On the other edges				
		(mm)			
			< a / 5		
		X	$\frac{\leq a / 5}{\leq 1.0}$		
		y z	<u>≤1.0</u> ≤t		
		L	``		
·	Note: t: glass thickness; s: pad width; a: the length of the edge				
TCP Defect	Crack, deep fold and deep pressure mark on the TCP are not accepted				
Pixel Size	The tolerance of display pixel dimension should be within $\pm 20\%$ of the spec				
Luminance	Refer to the spec or the reference sample				
Color	Refer to the spec or the reference sample				

Jul.30, 2008

Rev: 0.0

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

Rev: 0.0 Jul.30, 2008

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.

2. Soldering time: 3-4 sec.

3. Repeating time: no more than 3 times.

4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

♦ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

♦Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. ①For TRULY standard products ,we keep the right to change material ,process ... for improving the product property without any notice on our customer.
 - ②For OEM products ,if any change needed which may affect the product property , we will consult with our customer in advance.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.