

SanDisk
SD Software Tool Kit

User’s Guide

This Manual covers the SD Device Driver and File System
(SDDK-05)

®

SanDisk Corporation

140 Caspian Court
Sunnyvale, CA 94089

TEL: 408-542-0500 FAX: 408-542-0503
URL: http://www.sandisk.com

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 2

SanDisk® Corporation general policy does not recommend the use of its products in life support applications where in a failure or
malfunction of the product may directly threaten life or injury. Per SanDisk Terms and Conditions of Sale, the user of SanDisk
products in life support applications assumes all risk of such use and indemnifies SanDisk against all damages.

The information in this document is subject to change without notice.

SanDisk Corporation shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or
consequential damages resulting from the furnishing, performance, or use of this material.

All parts of SanDisk documentation are protected by copyright law and all rights are reserved. This documentation may not, in
whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from SanDisk Corporation.

SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation.

Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks of
their respective companies.

© 2001 SanDisk Corporation. All rights reserved.

SanDisk products are covered or licensed under one or more of the following U.S. Patent Nos. 5,070,032; 5,095,344; 5,168,465;
5,172,338; 5,198,380; 5,200,959; 5,268,318; 5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and foreign patents
awarded and pending.

Lit. No. 80-36-00144 Rev. 1 2001 Printed in U.S.A.

Revision History
• Revision 1—initial release.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 3

Table of Contents

1.0 Overview..6

1.1 Features ... 6
1.2 Target Applications ... 6
1.3 Customization .. 6

2.0 Introduction ...7
2.1 Components.. 7

2.1.1 File System... 9
2.1.2 API (Application Programmer’s Interface)... 9
2.1.3 System Specifics.. 9

3.0 SDDK-05 Source Directories..10
4.0 Porting ..13

4.1 SDCONFIG.H - Configuration Options .. 15
4.1.1 Software Configuration Group... 16

4.1.1.1 File System Group ... 16
4.1.1.2 Peripheral Bus Interface Group .. 18

4.1.2 Hardware Configuration... 21
4.1.2.1 SPI Interface... 21
4.1.2.2 SD/MultiMediaCard Interface ... 22

4.1.3 System Specific and Compilation Options ... 23
4.1.4 Examples.. 24

4.1.4.1 SPI Emulation Configuration Options... 24
4.1.4.2 SD/MultiMediaCard Configuration Options 25

4.2 INTERUPT.C — Interrupt Management Functions.. 26
4.2.1 Porting Requirements .. 26

4.3 TIMER.C — Timer Management Functions... 28
4.3.1 Porting Requirements .. 28

4.4 CRITERR.C — Critical Error Handler .. 30
4.4.1 Introduction .. 30
4.4.2 Unusual Error Conditions... 30
4.4.3 Porting Requirements .. 31
4.4.4 Error Recovery Strategies.. 32

4.5 REPORT.C — Error Reporting Functions .. 33
4.5.1 Porting Requirements .. 33

4.6 RDWR.C — System Dependent I/O Access .. 33
4.6.1 Porting Requirements .. 34

4.7 SPIOEM.C ... 35
4.7.1 Overview ... 35
4.7.2 SPI Modes Supported .. 35
4.7.3 Porting Requirements .. 36
4.7.4 Conclusion... 37

4.8 MMCOEM.C... 38
4.8.1 Overview ... 38
4.8.2 SD/MMC Modes Supported ... 38
4.8.3 Porting Requirements .. 39
4.8.4 Conclusion... 40

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 4

Table of Contents (continued)
5.0 Peripheral Bus Device Driver..41

5.1 Introduction.. 41
5.2 Configuring the Peripheral Bus Device Driver ... 41
5.3 Peripheral Bus Device Driver Public Subroutines .. 42

6.0 System Internals ..44
6.1 Important Data Structures for the FAT File System ... 45
6.2 System Internals Implementation.. 47

6.2.1 FAT Management Code .. 47
6.2.2 Directory Block Management Code... 48
6.2.3 Directory Object Management Code ... 49

7.0 API Introduction ...51
7.1 File System.. 51

7.1.1 pc_cluster_size .. 52
7.1.2 pc_diskabort.. 53
7.1.3 pc_dskclose ... 54
7.1.4 pc_diskflush .. 55
7.1.5 pc_format... 56
7.1.6 pc_free.. 57
7.1.7 pc_fstat ... 58
7.1.8 pc_gdone ... 60
7.1.9 pc_get_attributes .. 61
7.1.10 pc_gfirst ... 62
7.1.11 pc_gnext... 63
7.1.12 pc_isdir .. 64
7.1.13 pc_mfile ... 65
7.1.14 pc_mpath ... 66
7.1.15 pc_mkdir.. 67
7.1.16 pc_mv... 68
7.1.17 pc_system_init .. 69
7.1.18 pc_system_close.. 70
7.1.19 pc_pwd .. 71
7.1.20 pc_rmdir .. 72
7.1.21 pc_set_attributes... 73
7.1.22 pc_set_cwd .. 74
7.1.23 pc_set_default_drive.. 75
7.1.24 pc_stat .. 76
7.1.25 pc_unlink... 78
7.1.26 po_close ... 79
7.1.27 po_extend_file... 80
7.1.28 po_flush ... 81
7.1.29 po_lseek ... 82
7.1.30 po_open ... 83
7.1.31 po_read .. 84
7.1.32 po_truncate.. 85
7.1.33 po_write... 86

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 5

Table of Contents (continued)
7.2 Peripheral Bus Interface.. 87

7.2.1 xxx_init... 88
7.2.2 xxx_drive_open .. 89
7.2.3 xxx_drive_close... 90
7.2.4 xxx_read... 91
7.2.5 xxx_write ... 92
7.2.6 xxx_erase ... 93
7.2.7 xxx_read_serial ... 94

8.0 Sample Utility Programs..95
8.1 Introduction.. 95
8.2 CPTOSD .. 96
8.3 CPFRSD... 97
8.4 SDLS .. 98
8.5 SDMKD ... 99
8.6 SDRM .. 100
8.7 SDRMD ... 101
8.8 SDCAT... 102
8.9 REGRESS... 103
8.10 TSTSH.. 104

9.0 Evaluating the Tool Kit in a PC Environment ..108

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 6

1.0 Overview
The Secure Digital (SD) Device Driver and File System (SDDK-05) Software Development Kit (SDK) is an
integrated solution for managing high-level data on flash storage devices. The SDDK-05 requires
minimal memory resources for both ROM and RAM while maximizing system performance.
Once integrated into an application or operating system, the SDDK-05 provides full File System
functionality to manage data on storage devices. The SDDK-05 is a FAT (File Allocation Table) File
System, fully compatible with DOS operating systems. The media is interchangeable between many DOS
and Windows operating environments.
Also, in many embedded applications where the File System is not needed, the SDDK-05 can provide a
way to access the Flash storage devices directly through its low level drivers.

1.1 Features
The SDDK-05 offers the following features:

• Full FAT File System interface with Application Programmer’s Interface (API) functions such as
create, delete, insert, merge files, sub-directories, file date/time, file attributes and volume labels.

• The FAT File System is optional and can be removed.
• Support for FAT12 and FAT16.
• Supports long and short file names.
• Single or multiple socket compatibility.
• Removable or fixed media support.
• Absolute sector access supported.
• Tunable options for different target environments.
• Full functionality on systems where byte access is not permitted.
• Distribution of C source code for specific environment.
• Extensive examples.

1.2 Target Applications
• Customizable to all CPUs

- 8-bit, 16-bit and 32-bit processors supported
- Little-endian and big-endian integer formats supported
- TI DSPs supported

• Customizable to all ANSI-C or C++ compilers
• Customizable to all socket adapters and controllers

- Memory or I/O mapped base supported
- Multiple sockets and multiple adapters supported

1.3 Customization
The SDDK-05 is distributed in C source code format and intended to be customized on the target
application. Documentation and examples are provided to guide all aspects of the customization process
such as:

• Target CPUs
• Compilers
• Peripheral controllers: Serial Peripheral Interface (SPI) and SecureDigital/MultiMediaCard

(SD/MultiMediaCard)
• System hardware such as, interrupts, timer, user interaction
• Parameters and functionality suitable for the target application

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 7

2.0 Introduction
The SanDisk SDDK-05 contains everything developers need to integrate SanDisk flash data storage
products into any platform. The SanDisk SDDK-05 provides a native FAT File System and a stand-alone
low level Peripheral Bus device driver. Platforms with limited software support can take advantage of
this drop-in software component which adds complete disk subsystem functionality to the system. For
systems that do not need the FAT File System, the Peripheral Bus device driver offers complete low level
I/O access to the SanDisk flash products.

2.1 Components

The SDDK-05 includes the following components:

• API —Similar to POSIX/UNIX/DOS, this easy-to-use interface links the FAT File System or the
Peripheral Bus Interface and the host’s application software. It manages all aspects of storing and
retrieving files, using a SanDisk device driver to perform low level I/O.

• FAT File System—This fully functional, DOS compatible (FAT) file system is contained in a
portable ‘C’ source code library. It is re-entrant, and provides disk directory management as well
as high performance file I/O. This File System is optional and can be removed.

• Sample Programs—These clearly demonstrate the use of all APIs. Moreover, because these
programs are more sophisticated than just samples, they can serve as the basis for application
development, in most cases.

• Source Code—Complete, highly portable, ‘C’ source code is provided for the entire SDDK-05
with a selected peripheral bus.

• SPI Device Driver —This device driver handles all low-level I/O access to SanDisk
SD/MultiMediaCard storage products in SPI mode.

• SD/MultiMediaCard Device Driver —This device driver handles all low-level I/O access to
SanDisk SD/MultiMediaCard storage products in SD/MultiMediaCard mode.

The SDDK-05 is designed with the flexibility to be configured as a stand-alone low level driver or used
with the FAT File System. It is divided into these areas:

• FAT File System
• SanDisk API
• System Specific Section

- System Enhancement Layers
- System Abstraction Layers
- Device Specifics Layers

Figure 2-1 shows how these modules communicate with each other, depicting a high level architectural
view of the SDDK-05.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 8

System Enhancement Layer
(Pre-Erase, Error Handling ...)

System Abstraction Layer
(Big/Little Endian, 8/16 bit, Timer, Interrupt ...)

Device Specific Layer
(SPI, SD/MultiMediaCard)

SanDisk Application Program Interface
(SanDisk - API)

File Allocation Table
(FAT)

File System

Sy
st

em
 S

pe
ci

fic
 S

ec
tio

n

Sy
st

em
 S

pe
ci

fic
 S

ec
tio

n

File
System
Module

Figure 2-1 SDDK-05 Block Diagram

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 9

2.1.1 File System

The File System module is the highest level that manipulates data on the storage device. It communicates
with the System Specific Section through the software layers contained in the Interface and Platform
modules listed in Figure 3-1. Because the SDDK-05 is very flexible, designers can remove the FAT File
System from the File System Module and incorporate a different File System for use with the low level
peripheral interface driver.

2.1.2 API (Application Programmer’s Interface)

The API provides a way for an application to communicate with flash devices through defined routines
in the SDDK-05. This function set provides complete access to the flash device from the high level File
System to the low level hardware driver.

2.1.3 System Specifics

The System Specific Section is divided into three layers:

• Device Specific Layer - Contained in the Interface Module (shown in Figure 3-1). This layer isolates
product and defines mode selections (i.e. SD, SPI or MultiMediaCard). The Device Specific Layer
provides the low level device driver that directly accesses the storage devices. It can access the
platform module to perform system specific tasks.

• System Abstraction Layer - contained in the Platform Module (shown in Figure 3-1). This layer
hides system specifics and provides ease of portability into various host target environments (i.e.
processors, compilers). The System Abstraction Layer holds all system-specific routines such as
interrupts, timer, error handler, hardware abstraction layer, compilation tools, etc.

• System Enhancement Layer - contains added features such as Critical Error Handling, High
Performance Pre-Erase, etc.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 10

3.0 SDDK-05 Source Directories
To better understand the SDDK-05 design, the overall structure and software modularity of the SDDK-05
are presented as a source tree structure. This source tree shows a list of all the files in a general view of
the SDDK-05.

Interface—
(SD, MMC,SPI)

SDDK-05

Header

—SDTYPES.H

—SDCONFIG.H

—SDAPI.H

—PCKERNEL.H

—OEM.H

—DRIVE.H

—IOCONST.C

—IOUTIL.C

FAT File
System

—PCDISK.H

—INTRFACE.H

—APIUTIL.C

—BLOCK.C

—CHKMEDIA.C

—DEVIO.C

—DROBJ.C

—ERRCODE.C

—FILESRVC.C

—FLAPI.C

—FLCONST.C

—FLUTIL.C

—FORMAT.C

—FSAPI.C

—LONGFN.C

—LOWL.C

—PCKERNEL.C

—PC_MEMRY.C

Platform

—INTERUPT.C

—CRITERR.C

—REPORT.C

—TIMER.C

—RDWR.C

—UTIL.C

—PLX9054.H

—CRC.C

—MMCOEM.C

—SPIOEM.C

—SDMMC.C

—SDMMC.H

—SPIDRV.C

—SPI.C

—MMCDRV.C

—MMC.C

Docs OEM

—Documents

—Porting
 Guides

—CPFRSD.C

—CPTOSD.C

—HDTKMMC.C

—HTDKSPI.C

—REGRESS.C

—SDCAT.C

—SDLS.C

—SDMKD.C

—SDREN.C

—SDRM.C

—SDRMD.C

—TSTECC.C

—TSTEXT.C

—TSTSH.C

—CPSDTOSD.C

—DOTEST.C

Tstsampl

—MAKEFILE

—FILE.BLD

—MMC.BLD

—SPI.BLD

—PLATFMMC.BLD

Figure 3-1 SDDK-05 Source Tree
Note: Files with underlined file names may need to be modified during the porting process.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 11

The files associated with the directories are described below.

The Docs directory includes general documentation and specific porting guides.

The Header directory contains the following files:

SDTYPES.H Data Type definitions.
SDCONFIG.H Environment tuning configuration options.
SDAPI.H File System and Peripheral Bus API.
PCKERNEL.H Support multitasking routines.
OEM.H OEM specific routines.

The Platform directory contains the following files:

INTERUPT.C Interrupt service routine. (OEM specific platform.)
CRITERR.C Critical error handler. (OEM specific platform.)
REPORT.C Error reporting routine. (OEM specific platform.)
TIMER.C Timer supported routines. (OEM specific platform.)
RDWR.C Block read/write routines. (OEM specific platform.)
UTIL.C String manipulation and byte order conversion routines.
PLX9054.H PLX 9054 PCI controller definitions.
CRC.C CRC generation/validation for SPI/MultiMediaCard mode.
MMCOEM.C OEM specific low level routines.
SPIOEM.C OEM specific low level routines.

The FAT File System directory contains the following files:

PCDISK.H File System data structures and equates
INTRFACE.H Peripheral Bus software layer for File System
APIUTIL.C Utility routines to support the File System
BLOCK.C Directory block buffering routines
CHKMEDIA.C Device checking and Configuration
DEVIO.C File I/O software layer to access storage devices
DROBJ.C Object management. (Internal use only.)
ERRCODE.C Converts critical errors to internal error codes
FILESRVC.C File structure source code
FLAPI.C File System API
FLCONST.C File System constant data variables and structures
FLUTIL.C File System utilities
FORMAT.C High level format service
FSAPI.C User API level source code
LONGFN.C Long file name support routines
LOWL.C Low level file allocation table management
PCKERNEL.C Supported routines for multitasking environment
PC_MEMRY.C Memory service routines

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 12

The Interface directory contains the following files:

DRIVE.H Peripheral bus interface driver’s structures and data
IOCONST.C Contains all constant variables
IOUTIL.C Shared routines between modules

SD/MultiMediaCard and SPI Files*-
SDMMC.C Low level driver for SD/MultiMediaCard and SPI buses shared between

the those interfaces
SDMMC.H Data structures and equates for SD/MultiMediaCard and SPI buses
SPIDRV.C SPI driver interface and hardware related routines
SPI.C Data structures for SPI driver
MMCDRV.C SD/MultiMediaCard driver for SD/MultiMediaCard bus
MMC.C Data structures for SD/MultiMediaCard driver

Note: The File System is optional and can be removed from the build. If the File System is removed, there will be
only one file, UTIL.C, remaining from the File System to support the peripheral buses.

 The description above shows all Peripheral Buses currently supported by the SDDK-05, but not all of these
buses will be included in the SDDK-05 development floppy.

The Tstsampl directory includes sample files for different peripheral bus interfaces and File Systems.
They are described below:

SD/MultiMediaCard and SPI Files-
HDTKMMC.C MultiMediaCard interface demonstration without File System
HDTKSPI.C SPI interface demonstration without File System

Common Files-
CPFRSD.C File copy from device to host utility
CPSDTOSD.C File copy between devices supported by File System
CPTOSD.C File Copy from host to device utility
DOTEST.C A simple test to create a file on the target
REGRESS.C Disk exercise utility
SDCAT.C Display file content utility
SDLS.C Get hierarchical Directory utility
SDMKD.C Make directory utility
SDREN.C Rename file name utility
SDRM.C Delete file utility
SDRMD.C Remove directory utility
TSTECC.C ECC test utility
TSTEXT.C File extend utility
TSTSH.C Command shell file utility

The OEM directory contains build instructions (makefiles) and other related information to create object
files and libraries.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 13

4.0 Porting
This section describes the SDDK-05 porting and configuration for either SPI or SD/MultiMediaCard
mode. It describes how to best configure the SDDK-05 for the user’s environment and how to port the
system-specific portions to user’s environment. There are several files that need to be ported to the target
platform, most of which are in the platform module:

• Configuration SDCONFIG.H - contains configuration options.
• Interrupt Management Functions INTERUPT.C - interrupt service routine for the target

platform.
• Timer Management Functions TIMER.C - contains timer routines to support the run-time

driver.
• Critical Error Handler CRITERR.C - critical error handler.
• Error Reporting Functions REPORT.C - error reporting routine.
• System Dependent I/O Access RDWR.C - block move data routines
• SPI Hardware Access SPIOEM.C - SPI-specific hardware driver routines.
• SD/ MultiMediaCard Controller Access MMCOEM.C, SD/MultiMediaCard-specific hardware

driver routines.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 14

The block diagram below describes the flow of the porting process.

Setup
SDCONFIG.H

Library File

Options:
Select Interface (One Item per Compile)

 SPI, SD/MultiMediaCard mode.
 Use File System
 Yes, No
 Misc. System Features

Assemble &
Link all Files

Together

Create the Library

Application Build the Application
from the Library

Final Image Final Image

Final—Yes/No?

Yes

No

Debug

Figure 4-1 Sample Flow of Porting Process

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 15

4.1 SDCONFIG.H - Configuration Options

The file SDCONFIG.H contains compilation configuration constants that may be changed to tune
memory utilization and to enable/disable subsections. By modifying constants in this file, the user can
select either one of the peripheral bus interfaces (SPI or SD/MultiMediaCard), memory or I/O address
configuration, the number of controllers and drives to support (1 or 2), and various other options.

Other specialized configuration options include enabling the pre-erase feature. By enabling this feature,
the user directs the File System to pre-erase sectors so that subsequent write operations will be faster.
Because flash memory must be erased before it is written, the performance of normal write operations
includes this erasure overhead. If sectors are pre-erased, the subsequent write operations can take place
with a significant performance improvement.

Pre-erasing is useful when write operations must take place at the highest possible performance.
However, the actual pre-erase operations require just about as much time as normal writes. Thus, the
user should only use pre-erasure in areas of system processing where this additional time is not
prohibitive. Pre-erase can be enabled within several areas of the file system, including file deletion, the
allocation of contiguous extensions to files, and also during disk formatting. A detailed applications note
on Pre-erase is available from SanDisk.

Other configuration options allow a developer to tailor performance and memory usage. These include
selecting the amount of memory to use for internal buffering and omitting sections of code to reduce the
ROM footprint. After changing any of the values in SDCONFIG.H, the user must recompile the whole
library.

The configuration options are divided as follows:

• Software Configuration Group
- File System
- Peripheral Bus Interface

• Hardware Configuration Group
- SPI
- SD/MultiMediaCard

• System Specific and Compilation Group
The following sections describe the configuration groups.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 16

4.1.1 Software Configuration Group

The File System and Peripheral Bus Interface options can be specified independently of each other.
When the user is configuring the File System, he/she does not need to know how the low level interface
works. Similarly, when configuring the peripheral bus interface, it can be done without knowledge of
whether or not the File System is enabled. Options are divided into the following groups:

• File System Group
• Peripheral Bus Interface Group

4.1.1.1 File System Group

The File System group is enabled or disabled via the USE_FILE_SYSTEM option. When this option is set
(#define USE_FILE_SYSTEM 1), the File System is enabled and included in the build. When it is zero, the
File system is disabled and excluded from the executable image.

The following File System group configuration options may be modified:

• USE_FILE_SYSTEM
• RTFS_SHARE
• RTFS_SUBDIRS
• RTFS_WRITE
• NUM_USERS
• NBLKBUFFS
• NUSERFILES
• FAT_BUFFER_SIZE
• EMAXPATH

Each configuration option of the File System group is discussed below in detail.

USE_FILE_SYSTEM This option determines if the File System is to be included or
excluded from the build. Setting this option to one will enable the
File System. Setting this option to zero will remove the File System
from the build. If this option is zero, all related optional files can be
ignored.

RTFS_SHARE Set this option to zero to disable checking file sharing options such
as open exclusive, open exclusive write, etc. The default setting is
zero (disabled). Disabling RTFS_SHARE saves a small amount of
ROM space.

RTFS_SUBDIRS Set this option to zero to disable sub-directory support. The default
is one (enabled). Setting RTFS_SUBDIRS to zero saves a small
amount of ROM space but eliminates sub-directory support.

RTFS_WRITE Set this option to zero to disable writing support. The default is
one (enabled). Setting RTFS_WRITE to zero saves a small amount
of ROM space but eliminates all write support including file
writes, formatting and sub-directory creation.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 17

NUM_USERS This option determines the number of user contexts provided.
Each user context contains a current working directory and a
current default drive. The default value is one. If this value is
increased, the multitasking support macros and routines in
PCKERNEL.H and PCKERNEL.C must be implemented.

NBLKBUFFS This option determines the number of block buffers for sub-
directory traversal. There must be at least one buffer per drive.
Increasing the number of buffers can increase performance, but
since flash ATA read performance is relatively high, it is not
necessary to use a large value for this constant. Each block buffer
requires approximately 530 bytes of RAM.

NUSERFILES This option determines the maximum number of simultaneous
files that may be opened. The default value is 10. Each file requires
approximately 100 bytes of RAM. Reducing this value uses less
RAM, increasing it uses more.

FAT_BUFFER_SIZE This option defines the number of memory blocks reserved per
drive to buffer the drive’s file allocation table. Each buffer requires
a block of 512 bytes of RAM. The minimum value is two blocks.
The default value for FAT_BUFFER_SIZE is two. Increasing this
value will improve performance but require more RAM.

EMAXPATH This option defines the maximum path size for path names passed
to API calls. The default value is 128. If the user has a controlled,
embedded system and does not require such large paths, this
value may be reduced. This will reduce stack requirements a bit.
Note that the API calls do not check the lengths of the string
arguments that are passed to them.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 18

4.1.1.2 Peripheral Bus Interface Group

The Peripheral Bus Interface Group consists of several different options. Each option, listed below,
selects a particular Peripheral Bus.

USE_SD_CARD

USE_SPI

USE_SD_MMC

USE_SPI_EMULATION

USE_MMC_EMULATION

USE_SECURITY

Only one Peripheral Bus interface is selected and enabled at a time. Other bus interfaces should be
disabled. When a bus interface is selected, the referred low level driver is enabled and included into the
build. Other options offer more features that can be added to the low level driver.

USE_SD_CARD Set this option to one to use SD Card. Otherwise, the
MultiMediaCard will be used.

USE_SPI Set this option to one to use True SPI Mode to access
SD/MultiMediaCard devices. True SPI mode can be found on
Motorola processors such as 68HC11, 68328, PowerPC 821, 860,
many TI and non-TI, 370C Intel family, etc.

USE_SD_MMC Set this option to one to use True SD/MultiMediaCard Mode to
access SD/MultiMediaCard devices. True SD/MultiMediaCard
mode can be found on platforms that support the
SD/MultiMediaCard specification.

USE_SPI_EMULATION Set this option to one to use SPI Emulation hardware to access
SD/MultiMediaCard devices. An SPI Emulation hardware device
emulates SPI signals to access SD/MultiMediaCard devices such
as Parallel to SPI, Serial to SPI, etc., to be used on non-SPI systems.

USE_MMC_EMULATION Set this option to one to use SD/MultiMediaCard Emulation
hardware to access SD/MultiMediaCard devices. An
SD/MultiMediaCard Emulation hardware device emulates the
SD/MultiMediaCard signals to be used on non-MultiMediaCard
systems.

USE_SECURITY Set this option to one to enable access to the SD Card Secure Area.

Additional Options, related to the Peripheral Bus interface, are also provided:

USE_MEMMODE
USE_CONTIG_IO
USE_INTERRUPTS
USE_ONLY_LBA

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 19

USE_MULTI
USE_SET_FEATURE
WORD_ACCESS_ONLY
PREERASE_ON_ALLOC
PREERASE_ON_DELETE
PREERASE_ON_FORMAT
USE_PWR_MGMT
USE_HW_OPTION

USE_MEMMODE Set this option to one to configure the Peripheral Bus Interface in
Memory Mode. Set it to zero to allow the bus interface to operate
in I/O Mode. I/O mode follows the Intel class processor interface
for peripherals.

 For ATA devices, the register set will appear in the common
memory space window.

USE_CONTIG_IO Set this option to one to access the peripheral bus registers in a
contiguous I/O fashion. Set this option to zero to access the
peripheral bus registers at different locations.

 For IDE devices, if this option is set to one, the IDE register set is
defined as 16 contiguous I/O locations. If set to zero, the alternate
status register and drive address register are offset from the IDE
register bank by 0x206 and 0x207 respectively. The latter
configuration is standard for IDE in an IBM-AT class machine but
the contiguous configuration is superior for most embedded
systems.

 For other Peripheral Bus interfaces, the USE_CONTIG_IO option
may not be available.

USE_INTERRUPTS Set this option to zero to allow the bus interface to run only in
polled mode. Setting this option to one enables the interrupt
service, where the system runs in interrupt mode. When this value
is set to zero, the different constants related to interrupt service are
automatically set to -1 and the interrupt management code in
INTERUPT.C is automatically stubbed out. This is the simplest
port to do because an easier debug environment is provided. It is
advisable to disable interrupts when first porting the code to the
target system.

USE_ONLY_LBA Set this option to one to force the device driver to access the device
using LBA (logical block address) mode only. This reduces code
size somewhat and speeds execution. If this constant is zero, the
driver determines at run time whether to use CHS or LBA mode.
LBA mode is always selected if the device supports it. Because
SanDisk products always support LBA mode, it has been made a
compile time option.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 20

USE_MULTI Set this option to one to instruct the driver to perform multi-sector
transfers per interrupt. If the drive supports this mode, it can
reduce the number of interrupts required to complete a transfer.
Turning this option off at compile time reduces code size a bit. The
default is off (0) since SanDisk products all support MULTI
opcodes, but transfer one block per interrupt.

USE_SET_FEATURES For SPI or SD/MultiMediaCard devices, set this option to one to
force the CRC feature to be sent to the SD/MultiMediaCard device
after each power up/reset. When this feature is enabled, data will
be checked and command CRC information is calculated for every
requested command.

WORD_ACCESS_ONLY Set this value to one to enable WORD accessing to Task File
Registers. Setting this value to zero will enable BYTE accessing to
Task File Registers.

PREERASE_ON_ALLOC Set this value to one to cause all sectors allocated when extending a
file (via the po_extend_file function) to be pre-erased. This will
cause additional processing time (performance is comparable to
that of writing all of the associated sectors), but subsequent write
performance is increased.

PREERASE_ON_DELETE Set this value to one to cause all sectors occupied by deleted files to
be pre-erased. This will cause additional processing time for file
deletion (performance is comparable to that of writing all of the
associated sectors), but subsequent write performance is increased.

PREERASE_ON_FORMAT Set this value to one to cause all sectors on the volume to be pre-
erased during the format operation. Time to pre-format the format
is increased (performance is comparable to that of writing all of the
associated sectors), but subsequent write performance is increased.

USE_PWR_MGMT The default value is set to zero. The device will enter sleep mode
after 5 msec of inactivity. Setting this option to a non-zero value
will cause the device to stay in idle for a multiple of 5 msec before
going to sleep mode if there is no disk access activity.

USE_HW_OPTION In Big Endian (Motorola), the 16-bit data bus should be swapped
for the ATA environment. Thus, set this option to one. In the SPI
and SD/MultiMediaCard environments, the SDDK-05 will force
this option to be set to one for internal code selection.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 21

4.1.2 Hardware Configuration

The SDCONFIG.H file also includes hardware-related information based upon which peripheral bus
interface is selected:

• SPI
• SD/MultiMediaCard

4.1.2.1 SPI Interface

The SPI bus supports both I/O and Memory Mapped Mode.

I/O Mode

In I/O mode, the constants SPI_PRIMARY_IO_ADDRESS and SPI_SECONDARY_IO_ADDRESS are
assumed to be unsigned integers that contain the I/O addresses of the SPI devices. They are placed in the
array io_mapped_addresses[] in IOCONST.C and are used by the peripheral bus driver to map the I/O
space in and by SPIDRV.C to initialize the controller structure’s I/O address pointer. This feature is
associated with setting USE_MEMMODE to zero.

SPI_PRIMARY_IO_ADDRESS Defines the primary SPI I/O address. The variable
io_mapped_addresses[0] in IOCONST.C is initialized to this
value. The default constant value should be set for the target
environment.

SPI_SECONDARY_IO_ADDRESS Defines the secondary SPI I/O address. The variable
io_mapped_addresses[1] in IOCONST.C is initialized to this
value. The default value should be selected for the target
platform.

Memory Mode

In Memory Mode, the constants SPI_PRIMARY_MEM_ADDRESS and
SPI_SECONDARY_MEM_ADDRESS are assumed to be unsigned char pointers that contain the memory
addresses of the SPI devices. They are placed in the array mem_mapped_addresses_pointer[] in
IOCONST.C and are used by the peripheral bus driver to map the memory space in and by SPIDRV.C
to initialize the controller structure’s memory address pointer. This feature is associated with
USE_MEMMODE set to one.

SPI_PRIMARY_MEM_ADDRESS Defines the primary SPI memory address for the user’s
environment. The variable mem_mapped_addresses[0] in
IOCONST.C is initialized to this value. The default value
must be set for this constant.

SPI_SECONDARY_MEM_ADDRESS Defines the secondary SPI memory address for the user’s
environment. The variable mem_mapped_addresses[1] in
IOCONST.C is initialized to this value. The default value
must be set for this constant.

The interrupts are supported by setting SPI_PRIMARY_INTERRUPTS and
SPI_SECONDARY_INTERRUPT. They are placed in the array dev_interrupts[] in IOCONST.C and are

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 22

used by the peripheral bus driver SPIDRV.C to initialize the controller structure’s information and to
setup the interrupt service routines.

SPI_PRIMARY_INTERRUPT Defines the primary SPI interrupt for the user’s environment.
The variable dev_interrupts[0] in IOCONST.C is initialized
to this value. The default value is seven.

SPI_SECONDARY_INTERRUPT Defines the secondary SPI interrupt for the user’s
environment. The variable dev_interrupts[1] in IOCONST.C
is initialized to this value. The default value is five.

Note: Set SPI_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
SPI_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. The interrupt
service could also be shared among SPI devices. See also USE_INTERRUPTS.

4.1.2.2 SD/MultiMediaCard Interface

The SD/MultiMediaCard bus supports both I/O and Memory Mapped Mode.

I/O Mode

In I/O Mode, the constants MMC_PRIMARY_IO_ADDRESS and MMC_SECONDARY_IO_ADDRESS
are assumed to be unsigned integers that contain the I/O addresses of the SD/MultiMediaCard devices.
They are placed in the array io_mapped_addresses[] in IOCONST.C and are used by the peripheral bus
driver to map the I/O space in and by MMCDRV.C to initialize the controller structure’s I/O address
pointer. This feature is associated with setting USE_MEMMODE to zero.

MMC_PRIMARY_IO_ADDRESS Defines the primary SD/MultiMediaCard I/O address. The
variable io_mapped_addresses[0] in IOCONST.C is
initialized to this value. The default constant value should be
set for the target environment.

MMC_SECONDARY_IO_ADDRESS Defines the secondary SD/MultiMediaCard I/O address.
The variable io_mapped_addresses[1] in IOCONST.C is
initialized to this value. The default value should be selected
for the target platform.

Memory Mode

In Memory Mode, the constants MMC_PRIMARY_MEM_ADDRESS and
MMC_SECONDARY_MEM_ADDRESS are assumed to be unsigned char pointers that contain the
memory addresses of the SD/MultiMediaCard devices. They are placed in the array
mem_mapped_addresses_pointer[] in IOCONST.C and are used by the peripheral bus driver to map the
memory space in and by MMCDRV.C to initialize the controller structure’s memory address pointer.
This feature is associated with USE_MEMMODE set to one.

MMC_PRIMARY_MEM_ADDRESS Defines the primary SD/MultiMediaCard memory address
for the user’s environment. The variable
mem_mapped_addresses[0] in IOCONST.C is initialized to
this value. The default value must be set for this constant.

MMC_SECONDARY_MEM_ADDRESS Defines the secondary SD/MultiMediaCard memory
address for the user’s environment. The variable
mem_mapped_addresses[1] in IOCONST.C is initialized to
this value. The default value must be set for this constant.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 23

The interrupts are supported by setting MMC_PRIMARY_INTERRUPTS and
MMC_SECONDARY_INTERRUPT. They are placed in the array dev_interrupts[] in IOCONST.C and
are used by the peripheral bus driver MMCDRV.C to initialize the controller structure’s information and
to setup the interrupt service routines.

MMC_PRIMARY_INTERRUPT Defines the primary SD/MultiMediaCard interrupt for the
user’s environment. The variable dev_interrupts[0] in
IOCONST.C is initialized to this value. The default value is
seven.

MMC_ SECONDARY _INTERRUPT Defines the secondary SD/MultiMediaCard interrupt for
the user’s environment. The variable dev_interrupts[1] in
IOCONST.C is initialized to this value. The default value is
five.

Note: Set MMC_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
MMC_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. The interrupt
service could also be shared among SD/MultiMediaCard devices. See also USE_INTERRUPTS.

4.1.3 System Specific and Compilation Options

All other options for the Peripheral Bus or compiler are system specific. They are:

N_CONTROLLERS
DRIVES_PER_CONTROLLER1
DRIVES_PER_CONTROLLER2
LITTLE_ENDIAN
FAR

N_CONTROLLERS This option defines the number of controllers supported.
The maximum value is two. The default is one. For a system
that has more than two peripheral controllers, a few data
structures in IOCONST.C need to be modified to
accommodate the requirements.

DRIVES_PER_CONTROLLER1 This option defines the number of drives supported on the
first controller. The maximum number of flash devices
varies depending on the peripheral controller. The default is
one.

DRIVES_PER_CONTROLLER2 This option defines the number of drives supported on the
second controller. The maximum number of flash devices
varies depending on the peripheral controller. The default is
zero.

LITTLE_ENDIAN The user may set this to one if he/she is running in an Intel
little_endian environment. Doing this results in slightly
reduced code size and slightly increased performance. If
little_endian is zero, the code will execute in a big_endian
environment but data will be converted to little_endian in
the appropriate places.

FAR Define this as far or _far in segmented Intel environments,
otherwise define it as nothing (for example, #define FAR far
or #define FAR).

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 24

4.1.4 Examples

This section includes several examples that illustrate the use of options in SDCONFIG.H.

4.1.4.1 SPI Emulation Configuration Options

When the SPI Interface is selected with the File System, the options in the SDCONFIG.H are set as
follows:

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_SD_CARD 1 /* SD Card is used */
#define USE_SECURITY 1 /* Secure access to SD Card is enabled */
#define USE_SPI 0 /* SPI interface is disabled */
#define USE_SD_MMC 0 /* SD/MultiMediaCard interface is disabled */
#define USE_SPI_EMULATION 1 /* SPI Emulation mode is enabled */
#define USE_MMC_EMULATION 0 /* SD/MultiMediaCard Emulation mode is disabled */
#define WORD_ACCESS_ONLY 0 /* 16-bit Data Bus is disabled */
#define USE_MEMODE 1 /* Memory Mapped mode is enabled */
#define USE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 1 /* Error Correction Code is enabled */
#define USE_CONTIG_IO 1 /* Memory or I/O Address range is contiguous */
#define USE_MULTI 1 /* Multiple sectors transfer is enabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */
#define LITTLE_ENDIAN 1 /* Use Intel data format type */

#if (USE_INTERRUPTS)
#define SPI_PRIMARY_INTERRUPT 0x7 /* Primary I/O interrupt */
#define SPI_SECONDARY_INTERRUPT 0x5 /* Secondary I/O interrupt */
#else
#define SPI_PRIMARY_INTERRUPT -1 /* No Primary I/O interrupt */
#define SPI_SECONDARY_INTERRUPT -1 /* No Secondary I/O interrupt */
#endif

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 25

4.1.4.2 SD/MultiMediaCard Configuration Options

The SD/MultiMediaCard Interface is configured with the following options:

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_SD_CARD 1 /* SD Card is used */
#define USE_SECURITY 1 /* Secure access to SD Card is enabled */
#define USE_SPI 0 /* SPI interface is disabled */
#define USE_SD_MMC 1 /* SD/MultiMediaCard interface is enabled */
#define USE_SPI_EMULATION 0 /* SPI Emulation mode is disabled */
#define USE_MMC_EMULATION 0 /* SD/MultiMediaCard Emulation mode is disabled */
#define WORD_ACCESS_ONLY 0 /* 8-bit Data Bus is enabled */
#define USE_MEMODE 1 /* Memory Mapped mode is enabled */
#define USE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 1 /* ECC (Error Correction Code) is enabled */
#define USE_CONTIG_IO 0 /* Memory or I/O address region is random */
#define USE_MULTI 1 /* Multiple sectors transfer is enabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 26

4.2 INTERUPT.C — Interrupt Management Functions

INTERUPT.C provides interrupt services. In many embedded environments, real time interrupts are
needed at all times. The SDDK-05 interrupt model has been designed to meet the real time computing
requirements. The interrupt model is based on the semaphore mechanism for signaling and exchanging
information. When a semaphore operation is performed, it is waiting at the semaphore for a condition
change before proceeding. This semaphore is private to the SDDK-05, but can easily be modified to adapt
to different system environments.

The SDDK-05 can be programmed to use no interrupts. In this case, there are no integration issues
surrounding interrupts, but the user loses the ability to react to card removal and re-insertion events.
He/she also loses the ability to allow other tasks to execute while waiting for a data transfer to complete.
Since debugging a non-interrupt system is typically easier, it is recommended that the user starts without
interrupts and turn them on once he/she has basic functionality.

4.2.1 Porting Requirements

The following functions define the interrupt service for the SDDK-05.

These routines are invoked by the Peripheral Bus Interface through the use of macros and are defined as
follows:

SDVOID platform_controller_init(INT16 controller_no)
SDVOID platform_controller_close(INT16 controller_no)
SDVOID platform_set_signal(INT16 driveno)
SDVOID platform_clear_signal(INT16 driveno)
SDBOOL platform_wait_for_action(INT16 driveno, COUNT wait_ticks)

SDVOID platform_controller_init(INT16 controller_no)

Sets up system hardware, enables hardware interrupts and installs
interrupt service routines.

 This routine must be implemented if the interrupt service is preferred. It
is given a controller structure which contains the interrupt number to use
and the controller number. This routine must make sure that the interrupt
is hooked so that when an interrupt occurs, the interrupt service will
provide a signaling mechanism so that platform_wait_for_action() can
block at the user level and platform_set_signal() can be called from the
interrupt layer to wake the blocked thread with a proper signal. In most
real time kernel environments, a simple counting semaphore initialized to
zero will suffice.

SDVOID platform_controller_close(INT16 controller_no)
Removes interrupt service and restores system information.

 This routine must be implemented if the interrupt service is selected. The
interrupt signal is reset to avoid further false alarm requests and interrupt
data structures are clear. System information will be restored to the
original condition.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 27

SDBOOL platform_set_signal(INT16 driveno)
Signals a device interrupt.

 This routine must be implemented if interrupts are enabled. It is called
from the interrupt service routines and must create a condition such that
platform_wait_for_action() returns YES. A typical implementation would
increment a counting semaphore.

SDVOID platform_clear_signal(INT16 driveno)
Clears device interrupt signal.

 This routine must be implemented if the interrupt service is enabled. This
routine is invoked at the user level. It is called before a command is
issued and must establish a state such that platform_wait_for_action()
will block until platform_set_signal() is called by the interrupt service
routines.

SDBOOL platform_wait_for_action(INT16 driveno, COUNT wait_ticks)
Waits for an interrupt signal in a specific time.

 This routine must be implemented if the interrupt service is enabled. It
must wait for platform_set_signal() to signal that an interrupt has
occurred. If no signal arrives in wait_ticks, the routine returns NO to
indicate that there is a communication problem with the media, otherwise
it returns YES.

Note: Platform_wait_for_action() must be implemented such that it returns YES if the signal occurs before the
routine is called. A typical implementation would call a counting semaphore timed wait function.

These routines are invoked by the Peripheral Bus Interface through the use of the following macros:

OS_CONTROLLER_INIT platform_controller_init
OS_CONTROLLER_CLOSE platform_controller_close
OS_SET_SIGINAL platform_set_signal
OS_CLEAR_SIGNAL platform_clear_signal
OS_WAIT_FOR_ACTION platform_wait_for_action

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 28

4.3 TIMER.C — Timer Management Functions

Most systems have at least one timer function that is called at a fixed interval. The SDDK-05 makes use of
several system clock timer functions. These functions rely on a system timer being available and the
system hardware architecture. The SDDK-05 does not provide this access in portable C code. Instead,
several function prototypes are defined by the SDDK-05 to form a simple timer service.

4.3.1 Porting Requirements

Those routines are invoked by the File System or the Peripheral Bus Interface through the use of macros
and are defined as follows:

ULONG platform_ticks_p_second(SDVOID);
ULONG platform_get_ticks(SDVOID);
platform_delayms(COUNT milliseconds);
oem_getsysdate(UINT16 *date, UINT16 *time);

ULONG platform_ticks_p_second() Returns the current system clock period ticks per second.

 This routine must be implemented. It must return the current
system tick period in ticks per second. This returned value is a
scaled down value of the system timer.

ULONG platform_get_ticks() Returns the ever-increasing timer tick count.

 This routine must be implemented. It must return the current
system tick count. The period of the system tick is unimportant
but the function platform_ticks_p_second() in TIMER.C must be
changed to match the particular system. The peripheral driver
uses this function to set up a certain time it can remain in a
particular process and generates a time out event to avoid a dead
loop when the time has expired.

platform_delayms() Returns to the caller after a specific time expired.

 This routine must be implemented. Given a certain time, the main
purpose of this routine is to make sure the device comes up in a
stable state during the power down and up cycles or reset.

oem_getsysdate() Returns the current system date and time.

 This routine is only for use with the File System. The returned
values by this routine are translated into DOS format. Then, the
translation is written as the date/time values in the directory
entries.

 The Date field is combined into a 16-bit Date field and is encoded
with the following format:

 Bit 0-4: Day of month (1-31)
 Bit 5-8: Month (1-12)
 Bit 9-15: Year relative to 1980

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 29

 The Time field is combined into a 16-bit Time field and encoded
with the following format:

 Bit 0-4: Second multiply by 2 (0-29)
 Bit 5-10: Minutes (0-59)
 Bit 11-15: Hours (0-23)

 Please note that it is not necessary to implement this routine if the

peripheral bus is the only target.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 30

4.4 CRITERR.C — Critical Error Handler

4.4.1 Introduction

For cases where a disk access fails, host platforms need to be notified of the error condition. Many of
these errors are caused by inappropriate end user actions such as prematurely removing or swapping
devices. In such instances, a function, critical_error_handler(), is called with parameters indicating the
drive number and error code. Routines that the user supplies within the critical error handler can interact
with the user in a platform-specific way, requesting that the device be reinserted. It can then return a
code to the File System, directing it to retry the failed operation. Most platforms have at least some means
of reporting an error to the end user, even if it’s just beeping or flashing an LED. However, if the user’s
system is totally non-interactive, he/she can hard code return values, directing the File System to always
retry or abort failed operations.

The device I/O layer implemented in DEVIO.C, CHKMEDIA.C and the Peripheral Bus driver calls the
critical error handler when it requires feedback to determine which route to take in an error recovery
process. A sample implementation (CRITERR.C) is provided which prints the error and some vital
statistics to the console and then queries the console for the recovery route to proceed with. The sample
implementation also demonstrates how to extract vital statistics from the File System such as the current
mounted volume and whether or not buffers have been flushed.

4.4.2 Unusual Error Conditions

In addition to common errors such as “drive not ready” (i.e., ATA device is not properly inserted), it’s
possible (although not likely) that an “ID not found” or ECC error could occur. SanDisk products have
extensive built-in defect management ECC and spare sectors. Thus, unlike rotating disks, any problems
can be dynamically handled by the controller. However, if flash devices are misused under the most
abusive circumstances, it is possible to encounter an error condition.

For example, during a write operation, if the device is prematurely ejected, writing to a particular sector
may not be completed. The critical error handler will be notified of the condition, and if the card is
successfully replaced and the critical error handler directs the File System to retry the operation, the write
can continue successfully. However, if the user does not replace the device, or the system is powered off
at that moment, the sector can be left partially written.

Subsequent reads of the sector may result in either an “ID not found” or an ECC error. The data is lost,
but compounding the problem is the fact that this sector must be rewritten to be made useable again (the
device itself is still useable, it’s only the individual sector that’s out of commission). Although this error
scenario is uncommon, the file system error recovery scheme provides a solution. In such cases, during
the failed read operation, the critical error handler will be notified of the error (and the logical block
number of the associated sector). The critical error handler must notify the application so that it can take
appropriate steps to recover; it can then pass a return code to the file system indicating that the sector
should be written with a null record so that it can at least be made useable.

Again, this error condition is rare, but the user should add code to the critical error handler to process it
if he/she anticipates any of the scenarios that could cause this problem.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 31

4.4.3 Porting Requirements

The platform_critical_handler has the following syntax:

 INT16 platform_critical_handler (INT16 driveno, INT16 media_status, ULONG sector)
 driveno The drive number.
 media_status The error to handle.
 sector Sector number where error occurred.

The Error may be set with one of the following error numbers:

CRERR_BAD_FORMAT A valid device is in the slot but it does not have a recognizable MS-
DOS partition on it. If critical_error_handler() returns
CRITICAL_ERROR_FORMAT, the recovery code will attempt to
format the device and mount it. If it returns
CRITICAL_ERROR_RETRY, the mount operation will be retried. If
it returns CRITICAL_ERROR_ABORT, the operation will fail. (The
API call will fail.)

CRERR_NO_CARD The device is expected but there is no device in the slot. The error
handler should prompt the user to insert a device and then return
CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to fail. (The API
call will fail.)

CRERR_CHANGED_CARD The device is installed but its serial number does not match the
serial number of the volume that is currently mounted. The error
handler should prompt the user to re-insert the proper device and
then return CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to accept the new
device, flush all buffers from the old mount and proceed with the
new device.

Note: The File System does a check media call when it enters all API calls.

 If the CRITICAL_ERROR_ABORT condition (remount and proceed)

is detected by an API call such as po_open, pc_mkdir, pc_rmdir,
pc_gfirst etc., the call will proceed on the new volume without
returning a failure to the application. If the application is executing
an API call that can’t proceed without another API call first
executing, such as po_read, po_lseek, po_write, pc_gnext etc., the
API call will fail.

CRERR_BAD_CARD The device is expected but an unrecognized device type is in the
slot. This is logically equivalent to CRERR_NO_CARD. The error
handler should prompt the user to insert a device and then return
CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to fail. (The API
call will fail.)

CRERR_CARD_FAILURE A disk I/O error occurred. The device is in a slot and the I/O layer
has become unable to talk to it. If the error handler returns
CRITICAL_ERROR_RETRY, the I/O layer will attempt to reset the
device and retry the operation. If it returns
CRITICAL_ERROR_ABORT, the I/O layer will force the operation
to fail. (The API call will fail.)

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 32

CRERR_ID_ERROR The read operation has encountered an “ID not found” error.

CRERR_ECC_ERROR The read operation has encountered an ECC error.

The critical_error_handler return codes are as follows:

CRITICAL_ERROR_ABORT Always forces a failure return to the upper layer.

CRITICAL_ERROR_RETRY Always forces the I/O layer to retry the current operation.

CRITICAL_ERROR_FORMAT Always forces the I/O layer to format the disk. This return code
can only be used in response to the CRERR_BAD_FORMAT error.

CRITICAL_ERROR_CLEARECC Forces the File System to write a null record to a sector that caused
an “ID not found” or ECC error during a read. This is not often
used.

4.4.4 Error Recovery Strategies

The above paragraphs describe how the critical error handler should react to I/O errors. It is important to
note that the applications layer must also be able to recover. To recover from a
CRITICAL_ERROR_ABORT, the application should either be able to back up to the previous operation or
it should be prepared to discard data. The application might also wish to communicate with the error
handler to change the error recovery logic depending on where in the application thread it is.

For example, a digital camera has an image stored in memory. It wants to open a file and dump the
image to a disk. To do this, it opens a file, writes to it several times and then closes it. If the card was
removed after the open but before the close, it must be re-inserted or the data will be lost. The strategy
here can be to either instruct the error handler not to allow the abort, or if the abort is accepted, the
application layer must be willing to either discard the image or to back up and open the file again (on a
new device) and then write the data and close.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 33

4.5 REPORT.C — Error Reporting Functions

Most of the time, the flash devices and the host system communicate without user knowledge. The user
only gets involved when the SDDK-05 cannot determine whether to handle an error event such as
writing to the non-existing flash device, data corrupted, or Invalid File system, etc.

The user will be asked to inform the SDDK-05 what it should do next. This error report process should be
coupled tightly with the Critical Error Handler so that all error events are monitored within the handler.

4.5.1 Porting Requirements

The syntax of the error reporting function is defined as shown below:

SDVOID platform_report_error (INT16 error_number) User interaction.

4.6 RDWR.C — System Dependent I/O Access

In many environments, it is possible to perform hardware access through macros. The SDDK-05 offers
several macros, SDREAD_DATA08, SDREAD_DATA16, SDREAD_DATA32, SDWRITE_DATA08,
SDWRITE_DATA16 and SDWRITE_DATA32, to perform basic read/write access to system hardware or
device registers. The implementation of these macros is shown below:

In an I/O Mapped environment, the following macros are provided:

#define SDREAD_DATA08(X) (inpbyte((UINT16) (X)))
#define SDWRITE_ DATA08(X,Y) outpbyte((UINT16) (X),(UCHAR) (Y))

#if (WORD_ACCESS_ONLY) /* 16-bit interface */

#define SDREAD_DATA16(X) (inpword ((UINT16) (X)))
#define SDWRITE_DATA16(X,Y) outpword ((UINT16) (X), (UINT16) (Y))

#endif

In a Memory Mapped environment, the following macros are provided:

/* Read/Write register access */
#define SDREAD_DATA32(X) *((FPTR32) (X))
#define SDREAD_DATA16(X) *((FPTR16) (X))
#define SDREAD_DATA08(X) *((FPTR08) (X))

#define SDWRITE_DATA32(X, Y) (*((FPTR32) (X)) = (UINT32) (Y))
#define SDWRITE_DATA16(X, Y) (*((FPTR16) (X)) = (UINT16) (Y))
#define SDWRITE_DATA08(X, Y) (*((FPTR08) (X)) = (UINT08) (Y))

Note: The value of X (the address) comes from the register_file_address field in the device_control structure (see

ATADRV.H). These value are loaded from the array io_mapped_addresses[] or mem_mapped_addresses[].
(See IOCONST.C and the Configuring section of this user’s guide.)

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 34

4.6.1 Porting Requirements

In an I/O Mapped Mode, the following routines must be ported to match the user’s platform.

UINT16 inpword(UINT16 address);
SDVOID outpword(UINT16 address, UINT16 data);
UCHAR inpbyte(UINT16 address);
SDVOID outpbyte(UINT16 address, UCHAR data);

The block data moves improve system performance. They are:

#if (WORD_ACCESS_ONLY)
SDVOID oem_in_words (FPTR16 p, UCOUNT words, FPTR16 dreg);
SDVOID oem_out_words (FPTR16 p, UCOUNT words, FPTR16 dreg);
#else
SDVOID oem_in_words (FPTR p, UCOUNT words, FPTR dreg);
SDVOID oem_out_words (FPTR p, UCOUNT words, FPTR dreg);
#endif

Where:

FPTR16 p: unsigned short SDFAR pointer to data buffer
FPTR p: unsigned char SDFAR pointer to data buffer
UCOUNT words: number of words to transfer
FPTR16 dreg,
FPTR dreg: This pointer has two different meanings:
 - For I/O Mapped Mode, this refers to the controller structure
 - For Memory Mapped Mode, this refers to the location offset 400h from the base address of the
common memory if the A10 address line is mapped. Otherwise, it is a pointer to the base address of the
common memory.

These routines are defined in the file RDWR.C.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 35

4.7 SPIOEM.C

4.7.1 Overview

The SPIOEM.C file provides the functions to support OEM-specific hardware. It is related to the OEM
hardware portion in the register read/write level. In order to port the whole SDDK-05, the user has to
make this portion of the driver work first.

For example, for a microprocessor with SPI peripheral support, it has a set of registers, such as data
registers, status registers, and control registers to be programmed, in order to realize reliable transfer of
data IN/OUT of the microprocessor. Once this layer of the driver works correctly, the microprocessor
can send a command in SPI format to the SanDisk SD card and MultiMediaCard from the upper layer.
Therefore, this portion is similar to the “physical layer” of the network protocol stack. It is the base of all
upper layer porting, and it should be stable and able to detect bit/byte transfer errors, such as the
overrun error.

The SPIOEM.C functions primarily deal with reset of the (SPI) controller, transmission/reception of
data, sending command, and checking status (ready, error, etc), all of which are in the register level and
are hardware dependent. The related data structures are also defined here.

The OEM customer must modify the SPIOEM.C functions to work with their hardware system. Since
SDDK-05 is designed to be portable and generic, the SPIOEM.C file has generic components also, as
explained below.

4.7.2 SPI Modes Supported

SPIOEM.C consists of four modes:

• Native SPI

• PCI-SPI (for SanDisk Host Adapter board)

• SPI Emulation

• SPI Emulation using Parallel port

From the #if statements and comments below, the reader can identify these four modes.

#if (USE_SPI) /* Native SPI mode */

 #if (USE_MEMMODE) /*Memory mapped mode */

/* This is for the Native SPI mode, where the Motorola DragonBall microprocessor is used as the
template */

#else /* I/O mode */

/* This is for PCI-SPI mode with SanDisk FPGA host adapter */

#endif

#elif (USE_SPI_EMULATION) /* This is for SPI Emulation mode */

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 36

#if (USE_MEMMODE) /* Memory mapped mode */

/* This is for the SPI Emulation mode using the serial port, where the Mitsubishi M16C
microcontroller is used as the template */

#else /* I/O mode */

/* This is for SPI Emulation using the PC’s Parallel Port */

#endif

#endif

4.7.3 Porting Requirements

Before making changes to these functions, the user should make their own low level device driver
portion work standalone. Then fit the working portion into the SPIOEM.C file.

Based on the functional description above, the following is done to the four modes:
Note: the USE_SPI, USE_SPI_EMULATION, USE_MEMMODE constants are taken from SDCONFIG.H.
Please refer to section 4.1 above for details on these definitions.

• PCI-SPI Mode - USE_SPI and NOT USE_MEMMODE are used for the SanDisk PCI-SPI mode. It is
fixed to the SanDisk PCI_SD Host Adapter, and should not be changed. If there is a need, please
contact SanDisk.

• SPI Emulation using Parallel Port Mode - USE_SPI_EMULATION and NOT USE_MEMMODE are
used for SanDisk Parallel Port Emulation of SPI mode. It is fixed to the SanDisk Parallel Port Card
reader and should not be changed. If there is a need, please contact SanDisk.

• Native SPI Mode - Normally, the user will come to USE_SPI or USE_SPI_EMULATION mode. Both
are in memory-mapped mode (USE_MMODE). The Motorola DragonBall microprocessor is used as
a template for Native SPI mode (memory mapped),

• SPI Emulation Mode - The Mitsubishi M16C microcontroller SIO3/UART0 is used as a template for
USE_SPI_EMULATION Mode (memory mapped).

As mentioned above, in many cases customers only need to match base addresses in SDCONFIG.H to
use Native SPI or SPI Emulation mode. To do this, the user should go to SDCONFIG.H where he/she
will see similar #if statement for USE_SPI or USE_SPI_EMULATION, USE_MEMMODE, etc. The user
will also see definitions for different register sets, etc. defined there. The code itself is self-explanatory.

In spite of the generic aspect of the SPIOEM.C file, each system (microprocessor/microcontroller) has
unique properties. When the user needs to make changes, he/she should consider that most functions in
this file will be called from SPIDRV.C. Care should be taken not to change the prototype of functions
like:

• mmcresetcontroller()
• mmcSendCommand()
• getMMCResponseInfo()
• MMCTransmit()
• MMCReceive

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 37

• MMCPrepareAndSetup()
• CheckCardBusy()
• isCRCErrOnWrite()
• startMMC80Clocks()
• spi_cs_disable()
• spi_cs_enable()
• spi_hw_init()
• MMCSelectController()
• ……..

If prototypes of these functions are changed, a compilation/linking error will occur.

The user can make changes inside these functions based on different platforms. He/she can add special
functions to be called within these functions, if needed.

4.7.4 Conclusion

To use PCI-SD host adapter and Parallel port SPI emulation mode, normally the user should not change
anything.

If Native SPI or SPI Emulation(Not using Parallel port) modes are used, the following describes how to
make the required changes:

1. First, the user should make their own low level device driver portion, with register read/write, work
standalone.

2. Then, locate the portion in SPIOEM.C which choose USE_SPI or USE_SPI_EMULATION, and study
the template

3. Go to SDCONFIG.H to change the base address, etc., and

4. Go to SPIOEM.C to define new data structures, if needed. Carefully make changes inside the
existing functions based on the specific microprocessor/micro controller system.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 38

4.8 MMCOEM.C

4.8.1 Overview

The MMCOEM.C file provides the functions to support OEM-specific hardware. It is related to the OEM
hardware portion in the register read/write level. In order to port the whole SDDK-05, the user has to
make this portion of the driver work first.

For example, for a microprocessor with SD/MultiMediaCard peripheral support, it has a set of registers,
such as data registers, status registers, and control registers to be programmed, in order to realize reliable
transfer of data IN/OUT of the microprocessor. Once this layer of the driver works correctly, the
microprocessor can send a command in SD/MMC protocol format to the SanDisk SD card and
MultiMediaCard from the upper layer. Therefore, this portion is similar to the “physical layer” of the
network protocol stack. It is the base of all upper layer porting, and it should be stable and able to detect
bit/byte transfer errors, such as the overrun error.

The MMCOEM.C functions primarily deal with reset of the (SD/MultiMediaCard) controller,
transmission/reception of data, sending command, and checking status (ready, error, etc), all of which
are in the register level and are hardware dependent. The related data structures are also defined here.

The OEM customer must modify the MMCOEM.C functions to work with their hardware system. Since
SDDK-05 is designed to be portable and generic, the MMCOEM.C file has generic components also, as
explained below.

4.8.2 SD/MMC Modes Supported

MMCOEM.C consists of 3 modes:

• Native SD/MMC mode

• PCI-SD/MMC mode (for SanDisk Host Adapter board)

• SD/MMC Emulation using Parallel port

From the #if statements and comments below, the reader can identify these 3 modes.

#if (USE_SD_MMC)

 #if (USE_MEMMODE) /*Memory mapped mode */

/* This is for the Native SD/MMC mode, user need to fill their own code to make it work */

#else /* I/O mode */

/* This is for PCI-SD/MMC mode with SanDisk FPGA host adapter */

#endif

#elif (USE_MMC_EMULATION)

/* This is for SD/MMC emulation using the PC’s Parallel Port */

#endif

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 39

4.8.3 Porting Requirements

Before making changes to these functions, the user should make their own low level device driver
portion work standalone, and then fit the working portion into the MMCOEM.C file.

Based on the functional description above, the following is done to the 3 modes:
Note: the USE_SD_MMC, USE_MMC_EMULATION, USE_MEMMODE constants are taken from
SDCONFIG.H. Please refer to section 4.1 above for details on these definitions.

• PCI-SD/MMC Mode - USE_SD_MMC and NOT USE_MEMMODE are used for the SanDisk PCI-
SD/MMC mode. It is fixed to the SanDisk PCI_SD Host Adapter, and should not be changed. If
there is a need, please contact SanDisk.

• Native SD/MMC Mode - Normally, the user will use native SD/MMC mode if their hardware comes
with built-in SD/MMC port. Currently this mode is chosen under USE_SD_MMC and
USE_MEMMODE. User need to fill their own code into this mode.

• SD/MMC Emulation Mode - USE_MMC_EMULATION is used for SanDisk Parallel Port Emulation
of SD/MMC mode. It is fixed to the SanDisk Parallel Port Card reader and should not be changed.
If there is a need, please contact SanDisk.

As mentioned above, in many cases customers only need to match base addresses in SDCONFIG.H to
use Native SD/MMC or SD/MMC Emulation mode. To do this, the user should go to SDCONFIG.H
where he/she will see a similar #if statement for USE_SD_MMC or USE_MMC_EMULATION,
USE_MEMMODE, etc. The user will also see definitions for different register sets, etc. defined there. The
code itself is self-explanatory.

In spite of the generic aspect of the MMCOEM.C file, each system (microprocessor/microcontroller) has
unique properties. When the user needs to make changes, he/she should consider that most functions in
this file will be called from MMCDRV.C. Care should be taken not to change the prototype of functions
provided in MMCOEM.C. For example,

• mmcresetcontroller()
• mmcSendCommand()
• getMMCResponseInfo()
• MMCTransmit()
• MMCReceive()
• MMCPrepareAndSetup()
• CheckCardBusy()
• isCRCErrOnWrite()
• startMMC80Clocks()
• MMCSelectController()
• ……..

If prototypes of these functions are changed, a compilation/linking error will occur.

The user can make changes inside these functions based on different platforms. He/she can add special
functions to be called within these functions, if needed.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 40

4.8.4 Conclusion

To use PCI-SD host adapter and Parallel port SD/MMC emulation mode, normally the user should not
change anything.

If Native SD/MMC or SD/MMC Emulation (Not using Parallel port) modes are used, the following
describes how to make the required changes:

1. First, the user should make their own low level device driver portion, with register read/write, work
standalone.

2. Then, locate the portion in MMCOEM.C which choose USE_SD_MMC or USE_MMC_EMULATION,
and study the template

3. Go to SDCONFIG.H to change the base address, etc., and

4. Go to MMCOEM.C to define new data structures, if needed. Carefully make changes inside the
existing functions based on the specific microprocessor/micro controller system.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 41

5.0 Peripheral Bus Device Driver
5.1 Introduction

The Peripheral Bus Device Driver is implemented as a storage device driver to support the SanDisk SD
Card and MultiMediaCard. The device driver has been designed to be very portable and should be easily
adapted to any environment that supports either Memory or I/O Mapped peripheral access, interrupt
driven or polled mode.

5.2 Configuring the Peripheral Bus Device Driver

When I/O Mapped Mode is preferred, USE_MEMMODE is set to zero. Two arrays are provided in
IOCONST.C. These arrays, io_mapped_addresses[] and dev_interrupts[], house the I/O addresses and
interrupt numbers used by the low level driver software to control the peripheral controllers. The
description of these arrays follows:

const UINT16 io_mapped_addresses[n] I/O base address of register access region
const INT16 dev_interrupts[n] Device interrupt numbers

When Memory Mapped Mode is selected, USE_MEMMODE is set to one. Three arrays are used in
IOCONST.C. These arrays are initialized from constant definitions in SDCONFIG.H. The description of
these arrays is shown below:

const ULONG mem_mapped_addresses[n] Linear base address of register access
region.

const UTINY FAR *mem_mapped_addresses_pointer[n] Pointer in the target memory map to the
linear system address space.

const INT16 dev_interrupts[n] Device interrupt numbers.

Note: Set dev_interrupt[n] to -1 to run that interface in polled mode. Define the constant USE_INTERRUPTS to
zero in SDCONFIG.H to globally disable device interrupts and eliminate all porting issues related to signaling
and interrupts.

For an example, look at the SD/MultiMediaCard device driver in I/O Mapped Mode. The default
configuration is I/O address 0x278, interrupt 7 for the primary device and I/O address 0x378, interrupt 5
for the secondary. They are shown below:

io_mapped_addresses[0] = MMC_PRIMARY_IO_ADDRESS
io_mapped_addresses[1] = MMC_SECONDARY_IO_ADDRESS
dev_interrupts[0] = MMC_PRIMARY_INTERRUPT
dev_interrupts[1] = MMC_SECONDARY_INTERRUPT

When the SPI Emulation Device Driver is configured in Memory Mapped Mode, the arrays are initialized
with the constants defined in SDCONFIG.H. They are shown below.

mem_mapped_addresses[0] = SPI_BASE_ADDR
mem_mapped_addresses[1] = SPI_BASE_ADDR
mem_mapped_addresses_pointer[0] = SPI_BASE_ADDR
mem_mapped_addresses_pointer[1] = SPI_BASE_ADDR
dev_interrupts[0] = SPI_PRIMARY_INTERRUPT
dev_interrupts[1] = SPI_SECONDARY_INTERRUPT

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 42

5.3 Peripheral Bus Device Driver Public Subroutines

The Peripheral Bus Device Driver in SDDK-05 supports different peripheral buses such as SPI and
SD/MultiMediaCard. This driver has a uniform interface across these buses. Each peripheral bus
interface differs by bus name only. The first three letters of the bus make the bus name. Each peripheral
bus name is defined as follows:

SPI For SPI devices
MMC For SD/MultiMediaCard devices

There are eight functions for each peripheral bus. They are:

xxx_init
xxx_drive_open
xxx_drive_close
xxx_read
xxx_write
xxx_erase
xxx_read_serial

where xxx is the peripheral bus name.

The function prototypes of each peripheral bus are described below.

xxx_init Hardware initialization and data structure configuration.

xxx_drive_open Drive open routine.

 This routine is called by devio_open() and by the error recovery code in
DEVIO.C and CHKMEDIA.C. It calls xxx_controller_open() to make
sure the controller is initialized and then resets the drive, performs
diagnostics and retrieves the drive geometry. This routine can be called
either on behalf of a drive mount operation or on behalf of recovery logic
that senses a drive re-insertion or power down cycle.

xxx_drive_close Closes down a drive.

 This routine is only called by the PC based demo programs when they
exit. It restores the interrupt management scheme to what it was before
xxx_controller_init() was called.

 Note that it is not necessary to implement this function in an embedded
system.

xxx_read Reads blocks of data from the device.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 43

xxx_write Writes blocks of data to the device.

 This routine performs block I/O to and from the device. It is called by
devio_read() and devio_write() in DEVIO.C. The controller structure
contains the flag ‘enable_mapping.’ If this flag is set a partition base is
added to the block number. This is the normal case. In special cases such
as reading or writing the partition table, the mapping flag is turned off.

xxx_erase Pre-erases blocks on the device.

 This routine performs a block pre-erase on the device. It is called by
devio_erase() in DEVIO.C. The controller structure contains a the flag
‘enable_mapping.’ If this flag is set, a partition base is added to the block
number. This function is called by the File System when it erases a file.

xxx_read_serial Gets the drive’s unique serial number.

 This routine performs a procedure to read the serial number from the
drive. It is used by the check_media() functions (CHKMEDIA.C) to
detect if a device has been swapped. Beside this serial number, the
geometry of the device is also returned.

For example, if the SD/MultiMediaCard interface is selected, the bus interface will have the following
supported routines:

mmc_init
mmc _drive_open
mmc _drive_close
mmc _read
mmc _write
mmc _erase
mmc _read_serial

If the SPI interface is selected, the bus interface will have the following supported routines:

spi_init
spi _drive_open
spi _drive_close
spi _read
spi _write
spi _erase
spi _read_serial

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 44

6.0 System Internals
The FAT File System is widely accepted in the industry and will continue to be supported for many years
to come. To take advantage of this, the SDDK-05 offers a compatible FAT File System that allows the
media to be exchanged among many PC systems. There are many books that describe in detail how the
FAT file system works. Ray Duncan’s Advanced MS-DOS programming is particularly good. A brief
description follows, but a good DOS book is worth reviewing.

The file system consists of a parameter block (block zero) followed by one or more identical File
Allocation Tables (FATs), the fixed size root directory and the data area. The data area is logically broken
up into clusters. A cluster is simply one or more contiguous sectors.

The FAT works as follows: Each entry in the FAT maps to a cluster in the heap. If the entry is zero, that
cluster is free. If the entry is a special magic number and is unlinked, it marks a bad cluster. Otherwise,
the entry contains the index number of the next cluster in the chain. A special terminator value ends the
chain.

A file or sub-directory consists of a directory entry plus the FAT index number of the beginning of the
chain of clusters for that object.

To access the contents of a file, the user simply gets the first cluster from the directory entry and reads its
content from the heap area, then looks in the FAT for the next entry in the chain. If the entry contains a
number less than the end of the file marker, read its contents from the heap and get the next cluster from
the FAT, and so on. Directory entries contain a file name, creation date and time, an attribute byte, a size
and a pointer to the first cluster (if there is one) reserved by the entry.

A sub-directory is a special case of a directory entry. The sub-directory attribute is set in the attribute
byte and its clusters contain more directory entries. Sub-directories can grow by claiming more clusters
from the heap. Every sub-directory contains two special entries ‘.’ and ‘..’. ‘..’ points to the first cluster in
the chain of the directory’s parent and ‘.’ points to the beginning of the sub-directory. The root directory
contains room for a fixed number of directory entries. The number is determined by the format program
and is stored in block zero.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 45

6.1 Important Data Structures for the FAT File System

DDRIVE This structure is initialized when a drive is mounted. It is shared by all tasks. It
contains the location of the FAT, the location of the root sector, the cluster size,
the disk size and several other drive geometry values. DDRIVE structure also
stores running information about the drive, including FAT swapping
information and internal hints about where to put new file blocks and how
much free space is left on the drive. DDRIVE structure is accessed often by low
level routines.

DOSINODE This structure is the exact image of a DOS directory entry. It is used as a
template while scanning directory blocks and as a destination when creating
directory entries. A directory entry can be converted to a FINODE structure and
worked within that form.

FINODE This is the central structure of the SDDK-05. It contains the DOSINODE
information stored in host byte order plus information about its own block and
block offset (where it resides on the disk). It also contains several elements that
are used to control shared access to the directory entry. This includes a
LOCKOBJ structure, an opencount and a sharing mode flag. All directory and
file access routines eventually access the FINODE structure. FINODE structures
are shared by all tasks. Each in-use directory entry has one FINODE structure in
the shared FINODE pool, no matter how many times it is being accessed by
directory scans, or how many times it is open as a file. The directory entry that a
FINODE structure represents is uniquely determined by a combination of drive
structure pointer, block number and block offset.

DROBJ This is an abstract structure which tasks use to manage access to directories.
Unlike FINODE structures which are shared by all tasks, the DROBJ structure is
private to the task that allocated it and is not shared in any way. It contains a
pointer to the DDRIVE structure for the mounted volume, a pointer to the
FINODE structure of the directory, a pointer to a BLKBUFF structure in the
shared buffer pool, and a BLKINFO structure which is used to track the current
directory location. During directory searches, BLKBUFF structures attach to the
DROBJ as the directory at the FINODE is scanned and then the BLKINFO
structure scans the block. This makes the DROBJ a fully self-sufficient data
structure for scanning operations. Each open file structure points to a DROBJ
structure which represents the file’s directory entry. The file accesses the entries
FINODE through this linkage and it uses the DROBJ when updating the
directory entry on disk.

BLKBUFF This structure controls directory block buffering. It contains a 512-byte block
buffer and control fields. These include the block number, the DDRIVE structure
pointer, a lock flag for disallowing swaps while a buffer is being scanned and a
few flags for monitoring I/O status. All directory accesses are done through
block buffers. File I/O does not use them. BLKBUFFs are shared by all tasks in
the system.

PC_FILE This is the structure that controls file I/O. It contains open flags, a file pointer
and some additional pointers for optimizing file I/O. It also contains a pointer to
a DROBJ which represents the file’s directory entry. A PC_FILE structure is
assigned to each file descriptor in the system.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 46

DSTAT This is the SDDK-05 stat structure. It is loaded by calling pc_gfirst and pc_gnext.
These are equivalent to the DosFindFirst and DosFindNext functions of DOS.
The DSTAT structure contains the found directory entry’s name, size, datestamp
and attributes. The numeric values are in host byte order.

FILE_SYSTEM_USER This structure contains the current working directory, default drive and current
errno for the current task. In single task environments or in environments where
these properties may be kept global, there is only one of these structures,
otherwise there is one such structure per task. See the Porting and Configuration
chapter for more information.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 47

6.2 System Internals Implementation

The system internals describe the above data structures and discuss how the SDDK-05 Files System is
implemented. The data structures are intended for use with the FAT File System. Please ignore them if
the File System is not included. There are several important implementations that need to be addressed.
They are as follows:

1. FAT Management Code
2 Directory Block Management Code
3. Directory Object Management Code

The underlying algorithms and data structures associated with those implementations are described
below.

6.2.1 FAT Management Code

There are a dozen or so functions that manage the FAT. Most are involved in building up and releasing
chains but a few are specially optimized routines for allocating and finding contiguous blocks. These
routines enhance the performance of the file I/O package. Ultimately, all of these routines call either
pc_faxx to read values from the FAT or pc_pfaxx to write. These two routines then call either
pc_pfgword or pc_pfpword which provide these services through the algorithm.

The FAT swapping/buffer algorithm works as follows: Each time a FAT read or write is requested, the
block offset is calculated where that entry resides and pc_pfswap is called. Pc_pfswap returns a pointer
to a memory block where the disk block is cached, if writing, it also sets the blocks dirty bit so it will be
flushed when pc_flushfat is called. Pc_pfswap uses the FATSWAP structure in the DDRIVE structure to
manage swapping blocks in and out. First, it looks in data_array; if data_array[block_offset] is non zero,
it uses this as an index into the in-memory array of blocks and returns a pointer to that location.
Otherwise, there is a “page fault” condition and it must read the block in. Assuming steady state, the
cache area is already filled, so a block must be replaced. To do this, all the dirty blocks are flushed and a
block is replaced using a simple round robin algorithm. The replaced block’s entry in data_array is set to
zero and the new block is read from disk into the freed memory block. This memory block’s offset is now
placed in data_array[block_offset] and its address is returned. If it is a write request, the block’s dirty bit
is set. The routines that manipulate the FAT must be protected from re-entry for all this to work. This is
done throughout the SDDK-05. All FAT manipulation routines are in the file LOWL.C.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 48

6.2.2 Directory Block Management Code

The SDDK-05 uses a directory block buffer pool for all disk operations concerning directories. This
method eliminates excess disk traffic by providing a cache for the most frequently accessed disk blocks. It
also helps in multi-tasking implementations by allowing some API calls to complete even though there
may be an I/O backlog at the device driver. The buffering algorithm is straight forward. Writes use the
write through method. On reads, the buffer pool is searched for the requested block. If the block is not
found, a block is selected to be replaced based on an LRU (least recently used) algorithm and the claim
that the buffer for the block will be read. When available, the driver initiates the read. There is also a
block “alloc” call, this is similar to read but it does not perform the disk I/O. This call is used when
initializing a block during a directory create or extend. The block returned by a read or alloc call is in a
“locked” state, meaning it is excluded as a candidate for swapping until it is unlocked. This allows
scanning and modifying the buffers’ contents directly. There is also code to manage simultaneous read
access to blocks. This code handles both I/O waits and I/O errors. Simultaneous write access does not
occur. All block buffering routines are in the file BLOCK.C.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 49

6.2.3 Directory Object Management Code

This code manages directory scanning, insertion and expansion. There are five basic entry points to this
code: pc_fndnode, pc_get_inode, pc_mknode, pc_rmnode and pc_update_inode. The first two are
concerned with finding directory entries and the latter three are used to create, delete and modify them.
These routines are used heavily by the API calls.

The scanning code works as follows: pc_fndnode, with the help of the string processing routines in
UTILS.C, parses a path specifier into its drive and path components. It selects the drive to search and the
top of the search tree (either root or cwd) based on these values. This results in a search root DROBJ.
With this in hand it “nibbles” the path string from left to right, each time getting a directory entry name
to search for. It then calls pc_get_inode to find the entry in the directory at DROBJ. Each time an entry is
found, the entry’s DROBJ becomes the new search root. This continues until the path string is exhausted.
The calls to pc_get_inode are bracketed with non-exclusive semaphores to defend against simultaneous
writing to the directory being searched.

The real work is done in pc_get_inode and its subordinate pc_findin. Keep in mind that pc_get_inode is
called often by the API as well. The API calls it when a directory entry is to be modified. To do this, the
directory it resides in (its parent) must be locked. So pc_fndnode is called to find its parent. The parent’s
FINODE structure is then locked and pc_findin is called to find the entry to be changed. After the change
is made, pc_update_inode flushes it to disk and the parent is released. Then, Pc_get_inode grabs a new
DROBJ structure and initializes its BLKINFO portion to point to the first block in the subdirectory.
Special code makes the root directory and subdirectories appear the same even though their structures
are quite different. The DROBJ is now handed off to pc_findin which uses it to search for the entry.
Pc_findin calls the block buffer code to read each block in the directory until it runs out of blocks or it
finds the entry being searched. Each time it reads an entry, it updates the entry index counter in the
DROBJ’s BLKINFO structure. When it hits a block boundary, it clears this counter, increments the block
counter and releases the buffer it was scanning. It then calls the buffer code for a new block. Special code
detects when a cluster boundary has been hit and adjusts the block counters as needed. If the entry is not
found, the routine returns empty handed; otherwise it must make sure that a FINODE structure exists for
this directory entry. First it calls pc_scani to see if the FINODE already exists. If so, the FINODE’s open
count is increased and the DROBJ’s FINODE pointer is linked to it. Otherwise, the directory entry
information is converted from the disk resident form to a similar internal form and copied to a new
FINODE structure. This structure is then put on the shared FINODE list by pc_marki, so that other
instances of pc_findin use this shared copy. The DROBJ now fully represents the directory entry and
may be used for further scanning and directory manipulation. If the entry is a file, it may be used as the
underlying DROBJ for a PC_FILE structure.

When the API functions po_open and pc_mkdir need to create a directory entry, they find the parent
with pc_fndnode, lock it and call pc_mknode to create the new entry. Pc_mknode allocates a DROBJ and
FINODE structure and initializes them. If creating a directory entry, it does some manipulations to create
the ‘.’ and ‘..’ entries. It then calls pc_insert_inode which scans the directory for a deleted or unused
entry (see pc_findin). If an entry is found it calls pc_update_inode to replace it with the new one. If none
was found, it calls the FAT management code to extend the directory chain and copies the FINODE into
the new cluster. (Root directories of course can not be extended.) Finally, the new FINODE is placed in
the shared FINODE pool with pc_marki.

Pc_rmnode is used by pc_rmdir and pc_unlink to remove directories and files respectively. These
routines first find the entry using pc_fndnode and pc_findin, then lock the parent FINODE before
making the call. Pc_rmnode checks the FINODE open count to be sure no one else is accessing it. Then it
calls the FAT management code to free the entry’s cluster chain and marks the entry deleted and calls
pc_update_inode to flush it to disk.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 50

Pc_update_inode uses the DROBJ’s BLKINFO structure and FINODE structure to write a directory entry
to disk. It first reads the appropriate block and then merges the FINODE data into the block, converting it
from host bytes order to Intel byte order. Finally, it writes the block back out. All directory object code
may be found in DROBJ.C.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 51

7.0 API Introduction
The SDDK-05 provides a comprehensive Applications Programmer’s Interface (API) for accessing and
manipulating data on storage devices. The API provides two methods to achieve this goal:

• FAT File System: The combination of the File System and low level driver to manage data at high
level.

• Peripheral Bus Interface: The low level driver to directly access to the storage device.

7.1 File System

The File System Initialization and Close are two routines that must be called before entering and exiting
the application respectively. The initialization process must be done first before the File System is used.
The routine pc_system_init has to be called first to initialize internal memory buffers for use by the rest of
the routines. The closing process must be done after the File System is used. The routine pc_system_close
has to be called at the end to release internal memory buffers used by the File System. The API is re-
entrant so multiple tasks may access the File System simultaneously.

Programmers with experience on DOS, Unix, Posix or any other “normal” operating system should have
very little trouble programming to the API since it is similar to those APIs. The SDDK-05 purposely does
not match the Posix/Unix API. This is because in many cases the SDDK-05 co-resides with another File
System and we did not want to have symbol/constant clashes. If the user is doing a large port that would
benefit from full compatibility, call SanDisk Applications Engineering at 408-542-0405.

Note: The programs in the samples directory provide a very good framework for using the API. The user should
use them as a resource for resolving any questions he/she might have.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 52

7.1.1 pc_cluster_size

Name:
 pc_cluster_size - Return a drive’s cluster size.

Summary:
 #include “sdapi.h”
 UINT16 pc_cluster_size(INT16 driveno)

Description:
 This function will return the cluster size of the mounted device named in the argument.

Returns:
 The cluster size or zero if the device is not mounted.

See Also:
 po_extend_file

Example:
Given a byte count, calculate by rounding up how many clusters to extend a file by and then extend
the file.

#include “sdapi.h”
 UINT16 cluster_size;
 UINT16 n_clusters;
 cluster_size = pc_cluster_size(0);
 n_clusters = (n_to_write + cluster_size - 1) / cluster_size;
 po_extend_file (fd, n_clusters, PC_FIRST_FIT, preerase_region);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 53

7.1.2 pc_diskabort

Name:
 pc_diskabort - Abort operations on a disk.

Summary:
 #include “sdapi.h”
 SDVOID pc_diskabort(INT16 driveno)

Description:
If an application senses that there are problems with a disk, it should call pc_diskabort(“D:”). This
will cause all resources associated with that drive to be freed, but no disk writes will occur. All file
descriptors associated with the drive become invalid.

Returns:
 Nothing

Example:
#include “sdapi.h”
if (ask_driver_if_there_is_a_problem(0))
{
 pc_diskabort(0);
 if (drive_clear_error(0))
 pc_dskopen(0);
}

Note: It should not be necessary to call this routine. The card management software in CHKMEDIA.C handles this
function.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 54

7.1.3 pc_dskclose

Name:
 pc_dskclose - Flush buffers and free core.

Summary:
 #include “sdapi.h”
 SDBOOL pc_dskclose(INT16 driveno)

Description:
Given a path name containing a valid drive letter, flush the file allocation table and purge any
buffers or objects associated with the drive. Also, make sure all changed files are flushed to disk.

Returns:
 Returns YES if successful.

Example:
 #include “sdapi.h”
 pc_dskclose(0);

Note: This function is useful when the user knows that he/she will be removing the drive. In practice it is not

absolutely necessary to call this function since the card management code in CHKMEDIA.C will free the
resources for the user. See PC_DSKFLUSH.C.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 55

7.1.4 pc_diskflush

Name:
 pc_diskflush - Flush the FAT and all files on a disk.

Summary:
 #include “sdapi.h”
 SDBOOL pc_diskflush(INT16 driveno)

Description:
Given a path containing a valid drive letter flush the file allocation table and all changed files to the
disk. After this call returns, the disk image is synchronized with the SDDK-05 internal view of the
volume.

Returns:
 YES if the disk flush succeeded, otherwise NO

Example:
#include “sdapi.h”

 if (!pc_diskflush(0))
 printf(“Flush operation failed \n”);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 56

7.1.5 pc_format

Name:
 pc_format - Format the device.

Summary:
 #include “sdapi.h”
 SDBOOL pc_format (INT16 driveno)

Description:
Given a string containing a valid drive letter, place a standard partition and volume structure on the
drive.

Returns:
 Returns YES if the format succeeded, otherwise NO.

Example:
 #include “sdapi.h”
 if (!pc_format (0))
 printf (“could not format A: \n”);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 57

7.1.6 pc_free

Name:
 pc_free - Return count of free bytes on a disk.

Summary:
 #include “sdapi.h”
 ULONG pc_free(INT16 driveno)

Description:
 Given a path containing a valid drive letter, count the number of free bytes on the drive.

Note: The first time this routine is called after pc_dskinit it must scan the whole file allocation table to calculate the

number of free clusters, this takes some time. Subsequent calls return immediately with a valid value.

Returns:
 The number of bytes available on the disk.

Example:
 #include “sdapi.h”
 printf (“%lu Bytes Free on A:”, pc_free(0));

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 58

7.1.7 pc_fstat

Name:
 pc_fstat - Obtain statistics on an open file.

Summary:
 #include “sdapi.h”
 INT16 pc_fstat(PCFD file_descriptor, STAT *pstat)

Description:
This routine uses the file descriptor in the first argument and fills in the stat structure as described
here.

 st_dev - the entry’s drive number
 st_mode - Type of File Supported
 S_IFMT type of file mask
 S_IFCHR character special (unused)
 S_IFDIR directory
 S_IFBLK block special (unused)
 S_IFREG regular (a “file”)
 S_IWRITE Write permitted
 S_IREAD Read permitted.
 st_rdev - the entry’s drive number
 st_size - file size
 st_atime - creation date in DATESTR format
 st_mtime - creation date in DATESTR format
 st_ctime - creation date in DATESTR format
 t_blksize - optimal blocksize for I/O (cluster size)
 t_blocks - blocks allocated for file

fattributes - the DOS attributes. This is non-standard but supplied if the user wants to look at
them.

Returns:
 Returns zero if all went well otherwise it returns -1 and fs_user->p_errno is set to this value:
 PENBADF - Invalid file descriptor

Example:
 #include “sdapi.h”
 struct stat st;
 PCFD fd;
 fd = po_open(“A:\\MYFILE.TXT”, (PO_BINARY|PO_RDONLY), 0);
 if (pc_fstat(fd, &st)==0)
 {
 printf(“DRIVENO: %02d SIZE: %7ld DATE:%02d-%02d-%02d TIME:%02d:%02d\n”,
 st.st_dev,
 st.st_size, /* Size in bytes */
 (st.st_atime.date >> 5) & 0xF, /* Month */
 (st.st_atime.date & 0x1F), /* Day */
 80 +(st.st_atime.date >> 9) & 0xFF, /* Year */
 (st.st_atime.time >> 11) & 0x1F, /* Hour */
 (st.st_atime.time >> 5) & 0x3F); /* Minute */
 printf(“OPTIMAL BLOCK SIZE: %7ld FILE size (BLOCKS): %7ld\n”,
 st.st_blksize, st.st_blocks);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 59

 printf(“MODE BITS :”);
 if (st.st_mode&S_IFDIR)
 printf(“S_IFDIR”);
 if (st.st_mode&S_IFREG)
 printf(“ | S_IFREG”);
 if (st.st_mode&S_IWRITE)
 printf(“ | S_IWRITE”);
 if (st.st_mode&S_IREAD)
 printf(“ | S_IREAD\n”);
 printf(“\n”);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 60

7.1.8 pc_gdone

Name:
 pc_gdone - Free pc_gnext and pc_gfirst resources.

Summary:
 #include “sdapi.h”
 SDVOID pc_gdone(DSTAT *statobj)

Description:
Given a pointer to a DSTAT structure that was set up by a call to pc_gfirst free internal elements
used by the statobj.

Note: The user MUST call this function after having finished calling pc_gfirst and pc_gnext.

Returns:
 Nothing.

Example:
 See pc_gnext

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 61

7.1.9 pc_get_attributes

Name:
 pc_get_attributes - Get file attributes.

Summary:
 #include “sdapi.h”
 SDBOOL pc_get_attributes(TEXT *path, UINT16 *p_return);

Description:
 Given a file or directory name, returns the directory entry attributes associated with the entry.
 One or more of the following values will be or’ed together:
 BIT Nemonic
 0 ARDONLY
 1 AHIDDEN
 2 ASYSTEM
 3 AVOLUME
 4 ADIRENT
 5 ARCHIVE

Returns:
 Returns YES if successful otherwise it returns NO and fs_user->p_errno is set to this value:
 PENOENT

Example:
 #include “sdapi.h”
UTINY attribs;
 if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)
 {
 if (attribs & ARDONLY)
 printf(“File is %s\n”, “ARDONLY”);
 if (attribs & AHIDDEN)
 printf(“File is %s\n”, “AHIDDEN”);
 if (attribs & ASYSTEM)
 printf(“File is %s\n”, “ASYSTEM”);
 if (attribs & AVOLUME)
 printf(“File is %s\n”, “AVOLUME”);
 if (attribs & ADIRENT)
 printf(“File is %s\n”, “ADIRENT”);
 if (attribs & ARCHIVE)
 printf(“File is %s\n”, “ARCHIVE”);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 62

7.1.10 pc_gfirst

Name:
 pc_gfirst - Return the first entry in a directory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_gfirst(DSTAT *statobj, TEXT *pattern)

Description:
Given a pattern which contains both a path and a search pattern, fills in the structure at statobj with
information about the file and sets up internal parts of statobj to supply appropriate information for
calls to pc_gnext.

Examples of patterns are:
 “D:\USR\RELEASE\NETWORK*.C”
 “BIN\UU*.*”
 “MEMO_?.*”
 “*.*”

Note: The user must call pc_gdone to free internal resources if pc_gfirst succeeds.

Returns:
 YES if a match was found, otherwise returns NO.

See Also:
 pc_gnext, pc_gdone, and pcls.c in the samples directory.

Example:
 See PC_GNEXT

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 63

7.1.11 pc_gnext

Name:
 pc_gnext - Return next entry in a directory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_gnext(DSTAT *statobj)

Description:
 Continues with the directory scan started by a call to pc_gfirst.

Returns:
 YES if a match was found, otherwise returns NO.

See Also:
 pc_gnext and pc_gdone in the samples directory.

Example:
#include “sdapi.h”

if (pc_gfirst(&statobj,”A:\\dev*.c”))
{
 do

 {
 /* print file name, extension and size */
 printf(“%-8s.%-3s %7ld \n”,statobj.fname, statobj.fext, statobj.fsize);
 } while (pc_gnext(&statobj));

 /* Call gdone to free up internal resources */
 pc_gdone(&statobj);
}

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 64

7.1.12 pc_isdir

Name:
 pc_isdir - Test if a path is a directory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_isdir(TEXT *path)

Description:
This is a simple routine that opens a path and checks if it is a directory, then closes the path. The
program cp2pc in the samples directory uses it to test if a destination is a directory. The same
functionality can be gotten by calling pc_gfirst and testing the DSTAT structure.

Returns:
 YES if path points to a valid existing directory, otherwise returns NO.

Example:
#include “sdapi.h”

 if (pc_isdir(path))
 {
 printf(“ This %s is a directory. \n”, path);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 65

7.1.13 pc_mfile

Name:
 pc_mfile - Build a complete path from file name and extension.

Summary:
 #include “sdapi.h”
 TEXT *pc_mfile(TEXT *to, TEXT *filename, TEXT *ext)

Description:
 Builds a file from a file name and extension. The file name is stored
 into the text string.

Returns:
 The file name.

Example:
#include “sdapi.h”

 TEXT to[128];
 pc_mfile(to, filename, ext);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 66

7.1.14 pc_mpath

Name
 pc_mpath - Build a specific path name.

Summary:
 #include “sdapi.h”
 TEXT *pc_mpath(TEXT *to, TEXT *path, TEXT *filename)

Description:
 Builds a specific path from a file and path name. The resulting name is stored
 into the text string.

Returns:
 The file name.

Example:
#include “sdapi.h”

 TEXT to[128];
 pc_mfile(to, filename, ext);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 67

7.1.15 pc_mkdir

Name:
 pc_mkdir - Create a subdirectory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_mkdir(TEXT *path)

Description:
Creates a sub-directory in the path specified by path. Fails if a file or directory of the same name
already exists or if the directory component (if there is one) of path is not found.

Returns:
 Returns YES if the subdirectory was created.
 If NO is returned, fs_user->p_errno will be set to one of these values:
 PENOENT - Directory not found
 PEEXIST - File or directory already exists
 PENOSPC - Write failed

Example:
 #include “sdapi.h”
 pc_mkdir(“\\USR\\LIB\\HEADER\\SYS”);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 68

7.1.16 pc_mv

Name:
 pc_mv - Rename a file or directory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_mv(TEXT *oldpath, TEXT *newname)

Description:
Renames the file oldpath to newname. Fails if newname is invalid, already exists or oldpath is not
found. Pc_mv does not test if oldpath is a simple file. This makes it possible to rename directories
and volume labels.

Returns:
 YES if the file was renamed. Or returns no if oldpath was not found.
 If NO is returned, fs_user->p_errno will be set to one of these values:
 PENOENT - oldpath not found
 PEEXIST - newname already exists
 PENOSPC - Write failed

Example:
#include “sdapi.h”
if (!pc_mv(“\\USR\\TXT\\LETTER.TXT”, “LETTER.OLD”))
 printf(“Can’t rename LETTER.TXT\n”);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 69

7.1.17 pc_system_init

Name:
 pc_system_init - Initialize internal memory buffers and mount a drive.

Summary:
 #include “sdapi.h”
 SDBOOL pc_system_init(INT16 driveno);

Description:
Initializes the internal memory, searches for the device, checks for a valid drive to mount the device.

Returns:
 YES if successful.
 NO if failure.

Example:
#include “sdapi.h”

 if (!pc_system_init(0))
 {
 printf(“File System initialization failed. \n”);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 70

7.1.18 pc_system_close

Name:
 pc_system_close - Release internal memory buffers and dismount a drive.

Summary:
 #include “sdapi.h”
 SDBOOL pc_system_close(INT16 driveno);

Description:
Clears all File System data structures and unmounts a selected drive.

Returns:
 YES if closing is successful.
 NO if closing failed.
Example:

#include “sdapi.h”
 if (!pc_system_close(0)
 {
 printf(“Unable to release all internal buffers. \n”);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 71

7.1.19 pc_pwd

Name:
 pc_pwd - Return the current working directory.

Summary:
 #include “sdapi.h”
 SDBOOL pc_pwd(TEXT *drive, TEXT *return_buffer)

Description:
Fills return_buffer with the full path name of the current working directory for the drive specified in
drive. If the drive points to an empty string (““) or an invalid drive letter, the current working
directory for the default drive is returned.

Note: Return buffer must contain enough space to hold the full path.

Returns:

YES if a valid path was returned in return_buffer.
Returns NO if the current working directory could not be found. The failure mode would be due to
either the fact that the drive is not mounted, or an I/O error occurred.

Example:
 #include “sdapi.h”
 TEXT pwd[EMAXPATH];
 if (pc_pwd(“A:”, pwd))
 printf (“Working dir is %s\n”, pwd);
 else
 printf (“Can’t find working directory. \n”);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 72

7.1.20 pc_rmdir

Name:
 pc_rmdir - Delete a directory

Summary:
 #include “sdapi.h”
 SDBOOL pc_rmdir(TEXT *path)

Description:
 Deletes the directory specified in the path. Fails if path is not a directory, is read only or is not empty.

Returns:
 YES if the directory was successfully removed otherwise returns NO.
 If NO is returned fs_user->p_errno will be set to one of these values:
 PENOENT - Directory not found
 PEACCES - Not a directory, not empty or in use
 PENOSPC - Write failed

Example:
 #include “sdapi.h”
 if (!pc_rmdir(“D:\\USR\\TEMP”)
 printf(“Can’t delete directory. \n”);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 73

7.1.21 pc_set_attributes

Name:
 pc_set_attributes - Set File Attributes

Summary:
 #include “sdapi.h”
 SDBOOL pc_set_attributes(TEXT *path, UINT16 attributes);

Description:
 Given a file or directory name, sets the directory entry attributes associated with the entry.
 One or more of the following values may be or’ed together
 BIT Nemonic
 0 ARDONLY
 1 AHIDDEN
 2 ASYSTEM
 5 ARCHIVE

Returns:
 Returns YES if successful, otherwise returns NO and fs_user->p_errno is set to one of these values:
 PENOENT - Couldn’t find the entry
 PENOSPC - Write failed

Example:
#include “sdapi.h”
UTINY attribs;
 if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)
 {
 attribs |= ARDONLY|AHIDDEN
 pc_set_attributes(“A:\\COMMAND.COM”, attribs);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 74

7.1.22 pc_set_cwd

Name:
 pc_set_cwd - Set current working directory

Summary:
 #include “sdapi.h”
 SDBOOL pc_set_cwd(TEXT *path)

Description:
Makes the path the current working directory. If the path contains a drive component, the current
working directory is changed for that drive. Otherwise, the current working directory is changed for
the default drive.

Returns:
 Returns YES if the current working directory was changed otherwise returns NO.
 If NO is returned fs_user->p_errno will be set to this value:
 PENOENT - Directory not found

Example:
 #include “sdapi.h”
 if(!pc_set_cwd(“D:\\USR\\DATA\\FINANCE”))
 printf(“Can’t change working directory. \n”);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 75

7.1.23 pc_set_default_drive

Name:
 pc_set_default_drive - Set the default drive

Summary:
 #include “sdapi.h”
 SDBOOL pc_set_default_drive(INT16 driveno)

Description:
Use this function to set the current default drive that will be used when a path does not contain a
drive letter.

Note: Before this function is called, the default is 0.

Returns:
 NO if the drive is invalid or not mounted.

Example:
#include “sdapi.h”
if(!pc_set_default_drive(0))
 printf(“Can’t change working drive\n”);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 76

7.1.24 pc_stat

Name:
 pc_stat - Obtain statistics on a path

Summary:
 #include “sdapi.h”
 INT16 pc_stat(TEXT *path, STAT *pstat)

Description:
 This routine searches for the file or directory provided in the first argument.
 If found it fills in the stat structure as described here:
 st_dev - The entry’s drive number
 st_mode - File types
 S_IFMT type of file mask
 S_IFCHR character special (unused)
 S_IFDIR directory
 S_IFBLK block special (unused)
 S_IFREG regular (a “file”)
 S_IWRITE Write permitted
 S_IREAD Read permitted.
 st_rdev - The entry’s drive number
 st_size - file size
 st_atime - creation date in DATESTR format
 st_mtime - creation date in DATESTR format
 st_ctime - creation date in DATESTR format
 t_blksize - optimal blocksize for I/O (cluster size)
 t_blocks - blocks allocated for file

fattributes - The DOS attributes. This is non-standard but supplied if the user wants to look
at them

Returns:
 Returns zero if successful, otherwise -1 and fs_user->p_errno is set to one of these values:
 PENOENT

Example:
 #include “sdapi.h”
 struct stat st;
 if (pc_stat(“A:\\MYFILE.TXT”, &st)==0)
 {
 printf(“DRIVENO: %02d SIZE: %7ld DATE:%02d-%02d-%02d TIME:%02d:%02d\n”,
 st.st_dev,
 st.st_size, /* Size in bytes */
 (st.st_atime.date >> 5) & 0xF, /* Month */
 (st.st_atime.date & 0x1F), /* Day */
 80 +(st.st_atime.date >> 9) & 0xFF, /* Year */
 (st.st_atime.time >> 11) & 0x1F, /* Hour */
 (st.st_atime.time >> 5) & 0x3F); /* Minute */
 printf(“OPTIMAL BLOCK SIZE: %7ld FILE size (BLOCKS): %7ld\n”,
 st.st_blksize, st.st_blocks);
 printf(“MODE BITS :”);
 if (st.st_mode & S_IFDIR)

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 77

 printf(“S_IFDIR”);
 if (st.st_mode & S_IFREG)
 printf(“ | S_IFREG”);
 if (st.st_mode & S_IWRITE)
 printf(“ | S_IWRITE”);
 if (st.st_mode & S_IREAD)
 printf(“ | S_IREAD \n”);
 printf(“\n”);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 78

7.1.25 pc_unlink

Name:
 pc_unlink - Delete a file

Summary:
 #include “sdapi.h”
 SDBOOL pc_unlink(TEXT *path)

Description:
 Deletes the file in name. Fails if not a simple file, if it is open, does not exist or is read only.

Returns:
 YES if it successfully deleted the file.
 If NO is returned fs_user->p_errno will be set to one of these values:
 PENOENT - File not found
 PEACCES - Is a directory or an open file
 PENOSPC - Write failed

Example:
 if (!pc_unlink(“B:\\USR\\TEMP\\TMP001.PRN”))
 printf(“Cant delete file \n”)

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 79

7.1.26 po_close

Name:
 po_close - Close a file

Summary:
 #include “sdapi.h”
 INT16 po_close(PCFD fd)

Description:
Closes the file and updates the disk by flushing the directory entry and file allocation table, then frees
all core associated with FD.

Returns:
 Zero if all went well otherwise it returns -1.
 If -1 is returned, fs_user->p_errno will be set to one of these values:

 PENBADF - Invalid file descriptor
 PENOSPC - I/O error occurred

See Also:
 po_flush

Example:
 #include “sdapi.h”
 if (po_close(fd) < 0)
 printf(“Error closing file:%i\n”,p_errno);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 80

7.1.27 po_extend_file

Name:
 po_extend_file - Contiguous File Extend

Summary:
 #include “sdapi.h”

UINT16 po_extend_file(PCFD fd,
 UINT16 n_clusters,
 INT16 method,
 SDBOOL preerase_region)

Description:
Given a file descriptor, n_clusters clusters and method, extends the file and updates the file size. If
n_clusters free contiguous clusters are not available, then the file is not extended and the size in
clusters of the largest contiguous block of free clusters is returned. If the pre-erase region is set, all
allocated sectors are pre-erased.

Note: The file pointer is unchanged.

Method may be one of the following:
PC_FIRST_FIT - The first chain >= n_clusters
PC_BEST_FIT - The smallest chain >= n_clusters
PC_WORST_FIT - The largest chain >= n_clusters

Note: PC_FIRST_FIT is significantly faster than the others.

Returns:

Returns n_clusters if the file was extended. Otherwise it returns the largest free chain available. If
n_clusters is not returned, the file was not extended. 0xFFFF is returned if an error occurred. If the
return value is 0xFFFF, n_clusters fs_user->p_errno will be set with one of the following:
 PENBADF - File descriptor invalid or open read only
 PENOSPC - I/O failure

Example:
 Allocate a 100 Kbyte contiguous file, perform a data collect and write it out.

ULONG ltemp= 102400L;
UINT16 n_clusters;
UINT16 cluster_size;
INT16 i;
UTINY buffer[10240];

cluster_size = pc_cluster_size(“C:);
ltemp += cluster_size - 1;
n_clusters = ltemp / cluster_size;
if(po_extend_file(fd, n_clusters, PC_FIRST_FIT, 0) == n_clusters)
{
 for (i = 0; i < 10; i++)
 {
 collect_10k(buffer);
 po_write(fd, buffer, 10240);
 }
}

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 81

7.1.28 po_flush

Name:
 po_flush - Flush a file to disk

Summary:
 #include “sdapi.h”
 SDBOOL po_flush(PCFD fd)

Description:
Writes the file’s directory entry to disk and flushes the FAT. After this call completes, the on disk
view of the file is completely consistent with the in memory view. It is a good idea to call this
function periodically if a file is being extended. If a file is not flushed or closed and a power down
occurs, the file size will be wrong on disk and the FAT chains will be lost.

Returns:
 Returns YES if flush succeeded.
 If NO is returned, fs_user->p_errno will be set to one of these values:
 PENBADF - Invalid file descriptor
 PENOSPC - I/O error occurred

Example:
 #include “sdapi.h”
 if (po_flush(fd) < 0)
 printf(“Error flushing file:%i\n”,p_errno);

See Also:
 pc_dskflush()

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 82

7.1.29 po_lseek

Name:
 po_lseek - Move file pointer

Summary:
 #include “sdapi.h”
 ULONG po_lseek(PCFD fd, INT32 offset, INT16 origin, INT16 *err_flag)

Description:
Moves the file pointer by offset bytes described by origin.
method may have the following values:
 PSEEK_SET - Seek from beginning of file
 PSEEK_CUR - Seek from the current file pointer
 PSEEK_END - Seek from end of file

 Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Returns:
 The new offset or -1 on error.
 If -1 is returned, fs_user->p_errno will be set to one of these values:
 PENBADF - File descriptor invalid
 PEINVAL - Seek to negative file pointer
 err_flag - 0 no error; 1 file not exist; -1 illegal file offset pointer

Example:
 #include “sdapi.h”
 record = rec_number * rec_size;
 if (po_lseek (fd, record , PSEEK_SET, & err_flag) != record)
 printf(“Cant find record %ld\n”, record);

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 83

7.1.30 po_open

Name:
 po_open - Open a file

Summary:
 #include “sdapi.h”
 PCFD po_open(TEXT *path, UINT16 flag, UINT16 mode)

Description:
 Opens the file for access as specified in a flag. If creating, use mode to set the access permissions.

Flag values are:
PO_BINARY - Ignored
PO_TEXT - Ignored
PO_RDONLY - Open for read only
PO_RDWR - Read/write access allowed.
PO_WRONLY - Open for write only
PO_CREAT - Create the file if it does not exist.
PO_EXCL - If flag has (PO_CREAT|PO_EXCL) and the file
 already exists, fail and set fs_user->p_errno
 to EEXIST.
PO_TRUNC - Truncate the file if it already exists
PO_NOSHAREANY - Fail if already open, fail if another open is tried.
PO_NOSHAREWRITE - Fail if already open for write. And fail if another
 open for write is tried.

Mode values are:
PS_IWRITE - Write permitted
PS_IREAD - Read permitted. (Always true anyway)

Returns:
Returns a non-negative integer to be used as a file descriptor for calling po_read, po_write, po_seek,
po_flush, po_truncate, and po_close otherwise it returns -1 and fs_user->p_errno is set to:

PENOENT - File not found or path to file not found
PEMFILE - No file descriptors available (too many files open)
PEEXIST - Exclusive access requested but file already exists.
PEACCESS - Attempt to open a read only file or a special (directory)file.
PENOSPC - Create failed
PESHARE - Sharing error. Already open exclusive or attempting to open exclusive and

the file is already open.

Example:
#include “sdapi.h”
PCFD fd;
if (fd = po_open(“\\USR\\MYFILE”,
 (PO_CREAT|PO_EXCL|PO_WRONLY),
 PS_IWRITE) < 0)
 printf(“Cant create file error:%i\n”, fs_user->p_errno)

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 84

7.1.31 po_read

Name:
 po_read - Read from a file

Summary:
 #include “sdapi.h”
 UCOUNT po_read(PCFD fd, UCHAR *buf, UCOUNT count)

Description:
Attempts to read count bytes from the file at fd and place the data in buf. The file pointer is
updated.

Returns:
Returns the actual number of bytes read or 0xFFFF on error. If the return value is 0xFFFF fs_user-
>p_errno will be set to one of the following:

ENBADF - File descriptor invalid
PENOSPC - File I/O error

Example:
PCFD fd;
PCFD fd2;
fd = po_open(“FROM.FIL”, PO_RDONLY, 0);
fd2 =po_open(“TO.FIL”, PO_CREAT|PO_WRONLY, PS_IWRITE)
if (fd >= 0 && fd2 >= 0)
{
 while (po_read(fd, buff, 512) ==512)
 po_write(fd2, buff, 512);
}

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 85

7.1.32 po_truncate

Name:
 po_truncate - Truncate a file

Summary:
 #include “sdapi.h”
 SDBOOL po_truncate(PCFD fd, LONG newsize)

Description:
Truncates the open file at fd to newsize. Any file blocks beyond newsize are freed and the file size is
adjusted. The file pointer is left at the new end of the file.

Returns:
 Returns YES if po_truncate succeeded.
 If NO is returned, fs_user->p_errno will be set to one of these values:

PENBADF - Invalid file descriptor or open read only
PENOSPC - I/O error occurred
PEINVAL - Newsize is invalid
PESHARE - The file is open with another handle. Truncate is not permitted of the file is

open more then one.

Example:
 PCFD fd;
 fd = po_open(“DATA.FIL”, PO_RDWR, 0);
 if (fd > 0)
 po_truncate(fd, 1024L);

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 86

7.1.33 po_write

Name:
 po_write - Write to a file

Summary:
 #include “sdapi.h”
 UCOUNT po_write(PCFD fd, UCHAR *buf, UCOUNT bytes_to_write)

Description:
Attempts to write bytes_to_write from buf to the current file pointer of file at fd. The file pointer is
updated.

Returns:
Returns the number of bytes written or 0xFFFF on error. If the returned value is 0xFFFF, fs_user-
>p_errno will be set with one of the following:
 PENBADF - File descriptor invalid or open read only
 PENOSPC - Write failed because of no space or an I/O error.

Example:
PCFD fd;
PCFD fd2;
fd = po_open(“FROM.FIL”, PO_RDONLY, 0);
fd2 =po_open(“TO.FIL”, PO_CREAT|PO_WRONLY, PS_IWRITE)
if (fd >= 0 && fd2 >= 0)
{
 while (po_read(fd, buff, 512) == 512)
 po_write(fd2, buff, 512);
}

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 87

7.2 Peripheral Bus Interface

The Peripheral Bus Interface is a generic interface that supports the SanDisk SD Card and
MultiMediaCard. The bus interface is very simple and very easy to port to different storage products.
The SDDK-05 currently supports two different bus interfaces: SPI and SD/MultiMediaCard. The bus
protocol always begins with the first three letter of the bus type. They are describes as follows.

xxx_init
xxx_drive_open
xxx_drive_close
xxx_read
xxx_write
xxx_erase
xxx_read_serial

where xxx is the bus type.

The following table is the summary of the bus interfaces.

Bus Type xxx
SPI spi

SD/MultiMediaCard mmc

The bus protocol is described in detail in the following sections.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 88

7.2.1 xxx_init

Name:
 xxx_init - Hardware configuration and set up internal information.

Summary:
 #include “sdapi.h”
 SDBOOL xxx_init(VOID);

Description: Hardware initialization process for a selected bus protocol.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 if (!xxx_init())
 {
 printf(“Initialization process failed. \n”);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 89

7.2.2 xxx_drive_open

Name:
 xxx_drive_open - Initialize a device

Summary:
 #include “sdapi.h”
 SDBOOL xxx_drive_open(INT16 driveno);

Description: Initializes the device and sets up internal data structure.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 INT16 driveno;
 driveno = 0;
 if (!xxx_drive_open(driveno))
 {
 printf(“ Failed to initialize the device %d. \n”, driveno);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 90

7.2.3 xxx_drive_close

Name:
 xxx_drive_close - Release internal buffer for a selected device

Summary:
 #include “sdapi.h”
 SDBOOL xxx_drive_close(INT16 driveno);

Description: Closes and releases internal structure on the selected device.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 INT16 driveno;

 driveno = 0;
 if (!xxx_drive_close(driveno))
 {
 printf(“Unable to release the device %d \n”, driveno);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 91

7.2.4 xxx_read

Name:
 xxx_read - Read data from a select device

Summary:
 #include “sdapi.h”
 SDBOOL xxx_read(INT16 driveno, ULONG lba, UCHAR *buffer, UCOUNT no_blocks);

Description: Reads no_blocks data from a selected device beginning at sector LBA and stores
information into buffer.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 INT16 driveno;
 ULONG lba;
 UCOUNT number_of_blocks;
 UCHAR buffer[1024];
 driveno = 0;
 lba = 0L;
 number_of_blocks = 2;
 if (!xxx_read(driveno, lba, buffer, number_of_blocks))
 {
 printf(“ Failed to read from sector %ld \n”, lba);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 92

7.2.5 xxx_write

Name:
 xxx_write - Write data to a selected device

Summary:
 #include “sdapi.h”
 SDBOOL xxx_write(INT16 driveno, ULONG lba, UCHAR *buffer, UCOUNT no_blocks);

Description: Writes no_blocks of data to a selected device beginning at the sector LBA from the buffer.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 INT16 driveno;
 ULONG lba;
 UCOUNT number_of_blocks;
 UCHAR buffer[2048];
 driveno = 0;
 lba = 1L;
 number_of_blocks = 4;
 if (!xxx_write(driveno, lba, buffer, number_of_blocks))
 {
 printf(“ Failed to write to sector %ld \n”, lba);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 93

7.2.6 xxx_erase

Name:
 xxx_erase - Erase data to a selected device

Summary:
 #include “sdapi.h”
 SDBOOL xxx_erase(INT16 driveno, ULONG lba, UCOUNT no_blocks);

Description: Erases no_blocks of data from a selected device beginning at the sector LBA.

Returns:

Example:
 #include “sdapi.h”
 INT16 driveno;
 ULONG lba;
 UCOUNT number_of_blocks;
 driveno = 0;
 lba = 0L;
 number_of_blocks = 2;
 if (!xxx_erase(driveno, lba, number_of_blocks))
 {
 printf(“ Failed to erase data beginning at sector %ld \n”, lba);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 94

7.2.7 xxx_read_serial

Name:
 xxx_read_serial - Get device geometry

Summary:
 #include “sdapi.h”
 SDBOOL xxx_read_serial(INT16 driveno, PDRV_GEOMETRY_DESC drv_geometry);

Description: Given a selected device, the device geometry is returned. If the request is not granted,
the drv_geometry fields are set to zero.

Returns:
 YES if successful
 NO if failure

Example:
 #include “sdapi.h”
 INT16 driveno;
 DRV_GEOMETRY_DESC drv_geometry;
 driveno = 0;
 if (!xxx_read_serial(driveno, &drv_geometry))
 {
 printf(“ Failed to get the device %d geometry \n”, driveno);
 return(NO);
 }

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 95

8.0 Sample Utility Programs
8.1 Introduction

In this section, the user is provided some useful programs that he/she may use right out of the box or
modify for his/her purposes. Even if the user doesn’t use these programs, he/she should definitely study
them before using the SDDK-05. Every API call is used in these programs and they all work, so the user
is encouraged to take advantage of them.

Along with the sample programs, a few useful test programs and a tool to aid conversion of ANSI ‘C’
programs to K&R ‘C’ are provided. In this section, some liberties were taken that were not taken in the
library, namely some ANSI string handling functions are called, without providing portable versions of
all of those functions. There aren’t too many and it is hoped it will not be too much of an inconvenience.
Most of these tools require printf to link. The mini printf, in the source directory, is adequate for these
programs. The program REGRESS.C is designed to work without printf. This should be used to test the
user’s port on deeply embedded systems. If a console of some sort is available to the user, the program
TSTSH.C is a very powerful tool for debugging and testing his/her port.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 96

8.2 CPTOSD

Name:
 CPTOSD - Copy host files to the device with specific directory

Summary:
 cptosd [-b] file file file ... destpath
 -b = binary, don’t convert \n to \n\r

Description:
Copies the file(s) from the host to a PC destination path or filename. If the -b flag is asserted, files are
copied verbatim, otherwise MS-DOS style \n\r combinations are created from \n. If destpath is a PC
directory then the file(s) will be copied to that directory.
If MS-DOS is defined during compilation, binary copy mode is always used.
During compilation the SDDK-05 tests for the MS-DOS predefined macro. If there, it builds for DOS.
Otherwise it builds for UNIX. The UNIX flavor is NeXT mach. Look for #ifdef MS-DOS to find any
portability issues.

Examples:
 DOS
 cptosd \usr*.c A:\usr\pvo\sources
 cptosd *.exe D:\usr\ebs\bin
 cptosd memo.txt C:memo.txt
 UNIX
 cptosd /usr/*.c A:\usr\sources
 cptosd -b *.dat D:\datafile
 cptosd memo.txt C:memo.txt

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 97

8.3 CPFRSD

Name:
 CPFRSD - Copy DOS files to a host directory

Summary:
cpfrsd [-b] [-d] file destpath
-b = binary, don’t convert \n\r to \n
-d = the destination path is a directory, not
a full file spec. In this case a path specification will be created. This is not needed if file contains
wildcard characters.

Description:
Copies the file or wildcard expression to the destination path or filename. If the -b flag is asserted
files are copied verbatim, otherwise MS-DOS style \n\r combinations are converted to \n.
If MS-DOS is defined during compilation binary copy mode is always used.
During compilation the SDDK-05 tests for the MS-DOS predefined macro. If there, it builds for DOS.
Otherwise we build for UNIX. The UNIX flavor is NeXT mach. Look for #ifdef MS-DOS to find any
portability issues.

Examples:
DOS
 cpfrsd A:\source*.c C:\source
 cpfrsd A:\source\main.c C:\source\main.c
 cpfrsd -d A:\source\main.c C:\source
 cpfrsd A:\source\ma?n.c C:\source
UNIX
 cpfrsd “A:\source*.c” C:/source
 cpfrsd A:\source\main.c C:/source/main.c
 cpfrsd -d A:\source\main.c C:/source
 cpfrsd “A:\source\ma?n.c” C:/source

Known Bugs:
The program should take multiple input file specifications, which it does not. The -d flag does not
work. Test on the host to see if the destination is a directory instead of relying on the -d flag.Name.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 98

8.4 SDLS

Name:
 SDLS - Display directory information on the device

Summary:
 sdls [path]
 Default path is A:*.*

Description:
This program is similar to the DOS DIR command and the UNIX ls commands. It is simpler in that it
does not provide multiple sort and display options. SDLS calculates the free space on the device and
displays it after the display is complete.
This is a simple portable program. A lot of porters start with this program to test their port. The
feedback is very visual and it does not write to the disk.

Note: This program does not always follow the exact conventions that DOS and UNIX follow. It can sometimes be
confusing. If the user is testing an initial port, he/she should first issue the SDLS command on a known file.
Leave wildcard checks until later. Also note that UNIX users should protect wildcards from shell expansion.

Examples:

SDLS C:*.BAT
AUTOEXEC.BAT 452 12-22-92 17:06
 1 File(s) 2611200 Bytes free
SDLS C:\MOUSE*.*
. . 0 <DIR> 06-30-92 13:21
.. . 0 <DIR> 06-30-92 13:21
MOUSE .COM 34295 07-26-91 08:10
MOUSE .SYS 34499 07-26-91 08:10
MWINST .EXE 60856 07-26-91 08:10
MWINST .SCR 9731 07-26-91 08:10
MWINST .CFG 1082 07-26-91 08:11
MTUTOR .EXE 39736 07-26-91 08:11
MTUTOR .SCR 18930 07-26-91 08:11
COMCHECK .EXE 16300 07-26-91 08:11
READ .ME 626 07-26-91 08:11
INSTALL .BAT 1400 07-26-91 08:11
 12 File(s) 2611200 Bytes free

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 99

8.5 SDMKD

Name:
 SDMKD - Create a directory on the device

Summary:
 sdmkd <path>

Description:
 This program is similar to the DOS and UNIX MKDIR commands. It creates a directory.

Examples:
 sdmkd a:\usr
 sdmkd a:\usr\devt
 sdmkd a:\usr\devt\source

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 100

8.6 SDRM

Name:
 SDRM - Delete file(s) from a DOS directory

Summary:
 sdrm <path>

Description:
This program is similar to the DOS DELETE and UNIX RM commands. It removes file(s) from a
directory.

Examples:
sdrm a:\usr\oldfile.c
sdrm a:\usr\temp*.c
sdrm a:\usr*.tmp

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 101

8.7 SDRMD

Name:
 SDRMD - Remove a DOS sub-directory

Summary:
 sdrmd <path>

Description:
This program is similar to the DOS and UNIX RMDIR commands. It removes a subdirectory if the
subdirectory is empty.

Examples:
sdrmd a:\usr\subdir
sdrmd a:\usr\subdir\subdir1
sdrmd a:\subdir

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 102

8.8 SDCAT

Name:
 SDCAT - Displays a file’s contents

Summary:
 sdcat <path>

Description:
This program is similar to the UNIX CAT command. It displays the contents of the specified file.

Example:
sdcat a:\usr\datafile

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 103

8.9 REGRESS

Name:
 REGRESS - Stress Test SDDK-05

Summary:
 regress

Description:
This program performs two functions. It calls virtually all of the API routines plus it stress tests the
system for driver bugs and memory leaks. It works by repeatedly opening a disk and then entering
an inner loop which creates a directory and then creates N sub-directories below that. Finally, the
inner loop creates NUSERFILES files, writes to them, reads from them, seeks, truncates, closes,
renames and deletes them. Along the way it checks set current working directory and get working
directory. Finally the inner loop deletes all of the sub-directories it created and compares the current
disk free space to the free space before it started. These should be the same. After the inner loop
completes, the outer loop closes the drive and then reopens it to continue the test.
There are a few functions that do not get tested, they are:
 pc_gfirst
 pc_gnext
 pc_gdone
Not all modes of po_open and po_lseek are tested and the user’s port is not tested in multitasking
mode. The user may modify this program and run it in multiple threads if needed.
The following parameters may be changed:
USEPRINTF - Set this to zero to run completely quietly. If this is done the user should set a

break point in regress_error to catch errors.
test_drive[] - The drive where the test will occur.
test_dir[] - The directory where the test will occur
INNERLOOP - The Number of times we run the inner loop
OUTERLOOP - The Number of times we run the outer loop
SUBDIRDEPTH - The depth of the tested subdirectories.
NSUBDIRS - The number of subdirectories below test_dir. Must be less then 26. Each of

these directories will have SUBDIRDEPTH subdirectories below it.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 104

8.10 TSTSH

Name:
 TSTSH - Interactive Test Shell

Summary:
 tstsh

Description:
This program provides an interactive shell for accessing SDDK-05 functions. It provides a handy and
relaxed method for testing the user’s port. The test shell works only with the device (drive letters for
other system devices are not recognized). All commands are summarized below:

Command Descriptions:
 CAT - Display contents of a file

This command displays the contents of a file to the console.

 Example:
 Cat A:\use\ASCII\budget.txt

 CD - Set or display working directory

This command sets the default directory if an argument is supplied,
otherwise it displays the current working directory.

 Example:
 CD - Display working directory
 CD \usr\data - Change working directory

 CLOSE - Close a random access file
 This command closes a random access file that was opened with RNDOP. See RNDOP

for a discussion of random access files.

 Example:
 close 1 - Close random access file 1

 Note: The disk must already be open. See DSKOPEN.

 COPY - Copy a file to another.

 This command copies the source file to the destination.

 Example:
 COPY A:FILE.DAT A:FILE2.DAT

 DELETE - Delete a file.
 This command will delete a file.

 Example:
 DELETE A:\FILE001.CHK

 DIFF - Compare two files.
 This command compares two files and prints whether or not they are the same.

 Example:
 DIFF A:FILE1.DAT A:FILE2.DAT

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 105

 DIR - Print a directory listing.

 Example:
 Dir *.c

 DSKSEL - Set default drive
 This command set the default drive so that subsequent commands that do not

explicitly contain a drive letter will refer to this drive.

 Example:
 DSKSEL D:

 FILLFILE - Create a file and fill it with a pattern.
 This command creates a file and repeatedly fills it with a pattern. It is especially useful

when the user wishes to create some test files for copying, deleting, catting, etc. (i.e.,
when the user first brings up a ramdisk version).

 Example:
Create and fill the file file.dat with the pattern “THIS IS A TEST” 1000 times.
FILLFILE FILE.DAT “THIS IS A TEST” 1000

 FORMAT - Format a device.
 This command formats the device.

 Example:
 FORMAT A:

 GETATTR - Print a file’s attributes.
 This command calls the pc_get_attributes library routine and prints the results.

 Example:
 GETATTR FILE.DAT

 HELP - Display all commands

 Example:
 HELP

 LSTOPEN - Display all open random access files
 This command lists all open random access files along with their file handles. This is

especially useful since after the initial OPEN all accesses are done via the handle, and it
is easy to forget which handle goes with which file.

 Example:
 LSTOPEN

 MKDIR - Create a directory
 This command creates a directory.

 Example:
 MKDIR \USR\NEWDIR

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 106

 QUIT - Exit the command shell
 This command exits the command shell. The user should first issue a close on all files

and open disks.

 Example:
 QUIT

 READ - Read and display a random access record
 This command reads data from the random access file and prints its value to the

console. (See WRITE for how to write data to the file, SEEK for how to seek to a record
in the file, LSTOPEN to list all random access files by handle and, RNDOP for how to
open a random access file.)

 Example:
 RNDOP \TEST\FILE 100- open(returns handle=0)
 SEEK 0 0
 WRITE 0 “This is record zero”
 SEEK 0 1
 WRITE 0 This is record one”
 SEEK 0 0
 READ 0 - This will print
 “This is record zero”
 CLOSE 0

 RENAME - Rename a file
 This command will rename a FILE or directory.

 Example:
 RENAME C:\TES\JOSUF.TXT JOSEPH.TXT

 RMDIR - Remove directory
 This command will remove an empty subdirectory.

 Example:
 RMDIR \USR\THEDIR

 RNDOP - Open a random access file
 This routine will open or reopen a file for use by random access file I/O test

commands READ, WRITE and SEEK. It must be given the file name and the record
size for the file. The record size is stored internally and is used to pad write operations
to the correct width. (Record size should not exceed 512). Use CLOSE to close a file that
was opened with RNDOP and LSTOPEN to display all open files. RNDOP does not
return the file handle so use LSTOPEN. Note that the file handles are always returned
0, 1, 2, 3, etc. The user should use this knowledge if he/she wants to use random access
files in a script.

 Example:
 RNDOP TESTFIL 200

 SEEK - Seek to a record in a random access file.
 This command seeks to a record number in a random access file. It takes a file handle

and a record number as an argument.

SanDisk SDDK-05 User’s Guide

SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 107

 Example:
 See READ for an example

 SETATTR - Change a file’s attributes.
 This command calls the pc_set_attributes library routine to change a file’s attributes

 Example:
 SETATTR FILE:DAT RDONLY*

 The following values are valid for the attribute:
 RDONLY
 HIDDEN
 SYSTEM
 ANORMAL

 STAT - Stat a file and print results.
 This command calls the stat library routine and prints the results.

 Example:
 STAT A:FILE.DAT

 WRITE - Write data to a random access file
 This command writes data to the current record of a random access file. The data is

filled to the correct width (with spaces) internally. Multi word strings should be
quoted.

 Example:
 See READ.

SanDisk SDDK-05 User’s Guide

 SanDisk SDDK-05 User’s Guide Rev. 1 © 2001 SANDISK CORPORATION 108

9.0 Evaluating the Tool Kit in a PC
Environment

Since no configuration or porting is necessary to use SDDK-05 in the typical DOS environment, by using
a SanDisk-supplied PCI_SD board, the user can readily experiment with the system before starting the
port to his/her target hardware.

To run sample utility programs, the user should go to the directory Sdbuild/tstsampl where he/she
can execute any *.exe.

This reference design was developed using Microsoft C. The user can easily experiment with the APIs,
using this compiler.

