
Graphics Display Quick Start Manual for using the Hyundai 256x128 LCD
Module from AllElectronics - By Duane Becker 2005, 2006

I get a lot of requests on how to get this module running. Here are some quick
setups and answers. This quick setup uses any of the 8051 family microcontrollers.
Atmel (flash), Intel 8751 (EPROM), Phillips, etc. are all fair game. I’ve included a
schematic for the quick setup, a schematic for the +5 to -23 Volt inverter I designed
for driving these LCD panels, the source code, and some photographs proving that
it really does work. If you find this information useful, please send me a simple
“Thank you” email to snowleop@sover.net I’d appreciate it.

The Quick Setup Schematic

I used an Atmel 89C52 which holds up to 8-Kbytes of code, but the demonstration
code is only 160 bytes. The crystal is a 12 MHz parallel resonant crystal, but use
whatever suits you. Technically, you shouldn’t require the pullups on port 2 driving
the LCD data bus, but I found that the internal microcontroller pullups are too
weak and the bus doesn’t rise from “0” to “1” quickly enough when doing
successive writes. Also, you’d normally put 22-pF caps on each leg of the crystal to

ground. Port 0 on the microcontroller is open-drain and requires pullups if you are
driving to TTL input ports. The 1-microFarad cap from VCC to the reset pin is just
that, a reset. The other two capacitors are for decoupling and ensuring that the
voltage inverter gets all the current it needs when it switches on the inductor.

You may use an adjustable negative power supply for the VO supply to the LCD
backplane. If you want to build your own inverter, as shown in the above
schematic, here is the schematic for a -23 Volt inverter.

Be sure to use a CMOS version of the 555 timer. The bipolar version just doesn’t
turn off quickly enough to get a high flyback voltage from the inductor. Note that
the current pulled by the VO pin of the LCD changes based upon how many dots
you have turned on. In this simple example, the display contrast will change
depending on the setting of the contrast potentiometer and how many dots are
turned on. A remedy is to put a low-power negative adjustable regulator (like an
LM337LZ) after the inverter, or selecting one of the higher priced inverter-
regulator chips out there. Maxim makes these. So too, perhaps, do other
companies. Another note: CW on the potentiometer means Clockwise, such that
turning the potentiometer clockwise increases the negative voltage, and the
darkness of the display.

Here is a picture of the finished prototype. Yes, Virginia, it works.

Here is a close up of the resulting test display. Note the pattern of the two graphics
bytes (off on off on off on off on on on on on on on on on) are as shown in the
source code. In this example the text layer address starts at RAM address 0000h
and the graphics layer address starts at RAM address 1000h. Each horizontal row
displays 32 bytes of contents (32 characters on layer 1 or 32 x 8=256 pixels on layer
2). The top graphics row is displayed from addresses 1000h to 101Fh, the
most-significant-bit of each byte being shown on the left of the respective byte
column. The second graphics row is displayed from addresses 1020h to 103Fh. In
this example, I only put two nonzero bytes to addresses 1005h and 1006h.

Source Code for the Quick Test Software:

; Graphics Display Quick Test
; Initialize the display, Put HELLO in the upper left corner,
; and after HELLO, on the top line, draw two graphics bytes.

; The timings used during the hardware reset section are based on
; using a 12 MHz crystal, giving a cycle time of 1 microsecond.
; The DJNZ instruction in the 8051 family takes 2 cycles to complete.

; These are symbolic names for the ports used.

P0 EQU 80H ; PORT 0
MINUSRST EQUB P0.0 ; negative active reset pin of lcd
Minusrd EQUB P0.1 ; negative active read pin of lcd
minuswr EQUB P0.2 ; negative active write pin of lcd
minuscs EQUB P0.3 ; negative active chip select pin of lcd
address EQUB P0.4 ; address pin of lcd
DATABUS EQU 0A0h ; Data bus on port 2

 ORG 0000H ; A hard reset starts at 0000h on an 8751.

;------- Initialize the LCD module -----------

 clr minusrst ; drop -reset to display

 mov r0,#6 ; delay about 3 milliseconds
 mov r1,#0
pordelay1 djnz r1,pordelay1
 djnz r0,pordelay1

 setb minusrst ; raise -reset

 mov r0,#20 ; delay 10 milliseconds after reset is gone
 mov r1,#0
pordelay2 djnz r1,pordelay2
 djnz r0,pordelay2

 mov a,#58h ; DISPLAY OFF command so it's blank
 lcall writec

 mov a,#40h ; System set command
 lcall writec
 Mov a,#30h ; Int CG, 32chr CGRAM, 8lines/char, single pane
 ; No invert, lcd, normal shift clock
 lcall writed

 mov a,#87h ; 8 pixel-wide characters, 2 frame AC Drive
 lcall writed

 mov a,#07h ; Verfical char size=8 pixels
 lcall writed

 mov a,#1Fh ; 32 display bytes per line
 lcall writed

 mov a,#23h ; Tot. addr range per line (4 extra for horz blk)
 lcall writed

 mov a,#7Fh ; 128 display lines
 lcall writed

 mov a,#20h ; low byte of virtual screen width
 lcall writed

 mov a,#00h ; high byte of virtual screen width
 lcall writed
;------

 mov a,#44h ; send scroll command
 lcall writec
 clr a ; set layer 1 home address to 0000
 lcall writed
 clr a
 lcall writed
 mov a,#07fh ; 128 lines for layer 1
 lcall writed

 clr a ; Set layer2 (grapics) home address to 1000h
 lcall writed
 mov a,#10h
 lcall writed
 mov a,#07fh ; 128 lines for layer 2
 lcall writed
 ; since layers 3 and 4 are not used, stop sending
 ; scroll parameters.
;------
 mov a,#5Ah ; set horizontal scroll command
 lcall writec
 mov a,#00h ; no horz scroll adjustment
 lcall writed
;------
 mov a,#5Bh ; set overlay selections command
 lcall writec
 mov a,#00h ; OR layers, Text block 1, 2 layer
 lcall writed
 ; NOTE: layer 2 can ONLY be graphics (datasheet).
;------
 mov a,#4Ch ; Auto cursor increment +1 Command
 lcall writec

;---------- clear memory
 mov a,#46h ; Cursor Write Command
 lcall writec
 clr a ; 0000h address
 lcall writed
 clr a
 lcall writed

 mov a,#42h ; send mwrite command
 lcall writec
 mov r0,#0 ; send 256 loops of 4 bytes each

clr400lp mov a,#20h ; for a total of 1024 ascii spaces (20h)
 lcall writed
 lcall writed
 lcall writed
 lcall writed
 djnz r0,clr400lp

 mov r1,#28 ; send 7168 zeros of data to clear out CGRAM area
 ; (28 x 256 = 7168)
 mov r0,#0 ; from 0400h to 0FFFh and the graphics area from
 clr a ; 1000h to 1FFFh.
clrzeros lcall writed
 djnz r0,clrzeros
 djnz r1,clrzeros

;------
 mov a,#5Dh ; Although I don't display it, set cursor format
 lcall writec
 mov a,#04h ; five pels wide
 lcall writed
 mov a,#86h ; Vertical cursor size=7 pixels block cursor
 lcall writed
;------
 mov a,#59h ; display ON command
 lcall writec
 mov a,#00010100b ; no layer3, show layer2, show layer1, no cursor
 lcall writed
;------
 mov a,#5ch ; Set cgram address command
 lcall writec
 mov a,#00h ; CGRAM address = 0400h
 lcall writed
 mov a,#04h
 lcall writed
;---------------------
; AT THIS POINT THE DISPLAY IS CLEARED AND ON, CURSOR IS OFF, AND EVERYTHING
; SHOULD BE CLEARED OFF.

 ; PUT HELLO AT THE TOP OF THE SCREEN

 mov a,#46h ; set cursor address to top of text block (address 0000h)
 lcall writec
 mov a,#00h ; Remember that when sending addresses, you send the
 ; less significant byte first, and the more significant
 ; byte last.
 lcall writed
 mov a,#00h
 lcall writed

 mov a,#42h ; send mwrite command
 lcall writec
 mov A,#48h ; "H"
 lcall writed
 mov A,#45h ; "E"
 lcall writed
 mov A,#4Ch ; "L"

 lcall writed
 mov A,#4Ch ; "L"
 lcall writed
 mov A,#4Fh ; "O"
 lcall writed

 ; Set cursor address (address pointer) to top
 ; row, in byte column 5 (byte column just after
 ; the "O" in HELLO, but on the top line) at address
 ; 1005h.
 mov a,#46h
 lcall writec
 mov a,#05h
 lcall writed
 mov a,#10h
 lcall writed

 mov a,#42h ; send mwrite command
 lcall writec
 ; Draw off on off on off on off dots on top
 ; row right after HELLO.
 mov A,#01010101b ;
 lcall writed
 mov a,#0ffh ; DRAW ALL ON dots right after that. Recall that we have
 ; set the address pointer to autoincrement after each read
 ; or write.
 lcall writed

freeze sjmp freeze ; halt the firmware right here.

;----- COMMAND AND DATA WRITE SUBROUTINES FOLLOW ----
; -------writec-------------------------------------
writec equ $; write accumulator to command register (address 1)
 setb address ; select address = 1
 mov databus,a ; send accumulator data to databus
 setb minusrd ; raise the read, just in case
 clr minuscs ; drop -CS
 clr minuswr ; drop -wr bit low
 setb minuswr ; raise -wr line
 setb minuscs ; raise -cs
 orl databus,#0ffh ; tristate the bus
 ret

; -------writed---
writed equ $; write accumulator to data register (address 0)
 ; DOES NOT AFFECT ACCUMULATOR VALUE.
 clr address ; select address = 0
 mov databus,a ; Put accumulator to data bus
 setb minusrd ; Ensure the read line is inactive high
 clr minuscs ; drop -CS
 clr minuswr ; drop -wr bit low
 setb minuswr ; raise -wr line
 setb minuscs ; raise -cs

 orl databus,#0ffh ; tristate the bus
 ret

;------------------------------

 END

Please refrain from sending me your code version that doesn’t work, unless you are
willing to pay for engineering consulting work. I have not included algorithms for
line-draws, or ellipses, or other such features. I’ve done this work on my GDISP3
product already, and don’t freely give the code or information away. You may
license the code from me for a negotiated fee, or buy a completed GDISP3 daughter
card from me.

