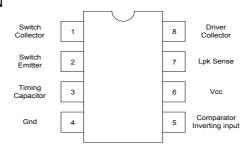
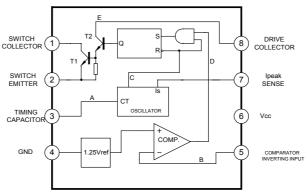

DC TO DC CONVERTER **CONTROLLER**

DESCRIPTION


The UTC MC34063 is a monolithic regulator subsystem, intended for use as DC to DC converter. This device contains a temperature compensated band gap reference, a duty-cycle control oscillator, driver and high current output switch. It can be used for step down, step-up or inverting switching regulators as well as for series pass regulators.

FEATURES


- *Operation from 3.0V to 40V.
- *Short circuit current limiting.
- *Low standby current.
- *Output switch current of 1.5A without external transistors.
- *Frequency of operation from 100Hz to 100kHz.
- *Step-up, step-down or inverting switch regulators.

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	Vcc	40	V
Comparator input voltage range	Vi(comp)	-0.3~+40	V
Switch collector voltage	Vc(sw)	40	V
Switch Emitter Voltage	Ve(sw)	40	V
Switch collector to emitter voltage	Vce(sw)	40	V
Driver collector Voltage	Vc(dr)	40	V
Switch current	Isw	1.5	A
Power Dissipation (Ta=25°C) DIP	Pd	1250	mW
SOP		625	mW
Thermal Characteristics DIP SOP		100 160	°C/W °C/W
Operating junction temperature	Tj	150	°C
Operating ambient temperature range	Ta	0~70	°C
Storage temperature range	Tstg	-65~150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)

(Vcc=5.0V,Ta=0~70°C, unless otherwise specified)

(100 0.01,14 0 10 0, 4111000 0110111						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Oscillator						
Charging Current	Ichg	Vcc=5 to 40V,Ta=25°C	22	31	42	μΑ
Discharging Current	Idischg	Vcc=5 to 40V,Ta=25°C	140	190	260	μΑ
Oscillator Amplitude	Vosc	Ta=25°C		0.5		V
Discharge to Charge Current Ratio	K	V7=Vcc,Ta=25°C	5.2	6.1	7.5	
Current limit Sense Voltage	Vsense	lchg=ldischg Ta=25°C	250	300	350	mV
Output Switch						
Saturation Voltage 1(note)	Vce(sat)1	Isw=1.0A Vc(driver)=Vc(sw)		0.95	1.3	V
Saturation Voltage 2(note)	Vce(sat)2	Isw=1.0A Vc(driver)=50mA		0.45	0.7	V
DC Current Gain (note)	Gi(DC)	Isw=1.0A Vce=5.0V,Ta=25°C	50	180		
Collector Off State Current (note)	C(off)	Vce=40.0V,Ta=25°C		0.01	100	μΑ
Comparator						
Threshold Voltage	Vth		1.21	1.24	1.29	V
Threshold Voltage Line Regulation	Vth	Vcc=3~40V		2.0	5.0	mV
Input Bias Current	Ibias	Vi=0V		50	400	nA
Total Device						
Supply Current	Icc	Vcc=5~40V Ct=0.001 V7=Vcc Vc>Vth Pin2=GND		2.7	4.0	mA

NOTE: Output switch tests are performed under pulsed conditions to minimize power dissipation.

Figure 1. Output Switch On-Off Time versus **Oscillator Timing Capacitor**

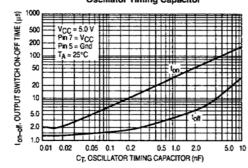


Figure 2. Timing Capacitor Waveform

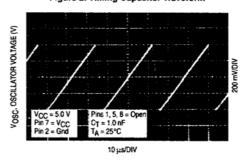


Figure 3. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

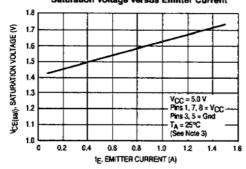


Figure 4. Common Emitter Configuration Output Switch Saturation Voltage versus

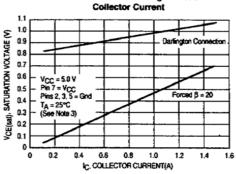


Figure 5. Current Limit Sense Voltage

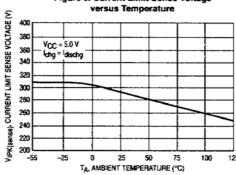


Figure 6. Standby Supply Current versus Supply Voltage

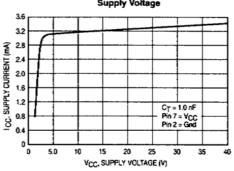
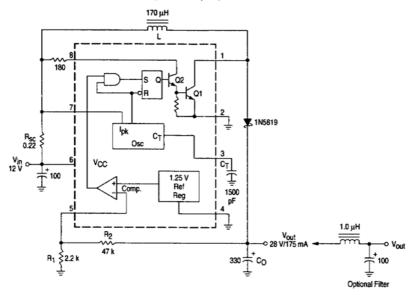
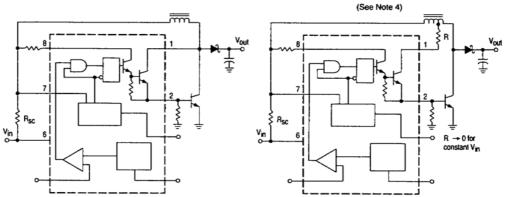



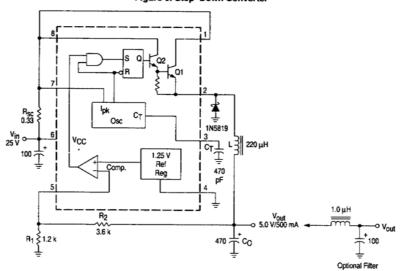
Figure 7. Step-Up Converter



Test	Conditions	Results	
Line Regulation	V _{in} = 8.0 V to 16 V, I _O = 175 mA	30 mV = ± 0.05%	
Load Regulation	V _{in} = 12 V, I _O = 75 mA to 175 mA	10 mV = ± 0.017%	
Output Ripple	V _{in} = 12 V, I _O = 175 mA	400 mVp-p	
Efficiency	V _{in} = 12 V, I _O = 175 mA	87.7%	
Output Ripple With Optional Filter	V _{in} = 12 V, I _O = 175 mA	40 mVp-p	

Figure 8. External Current Boost Connections for I_C Peak Greater than 1.5 A

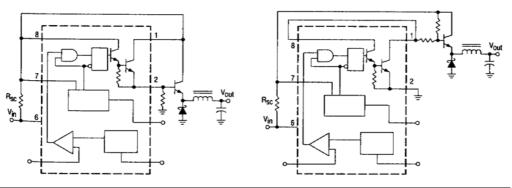
8a. External NPN Switch


8b. External NPN Saturated Switch

NOTE: 4. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

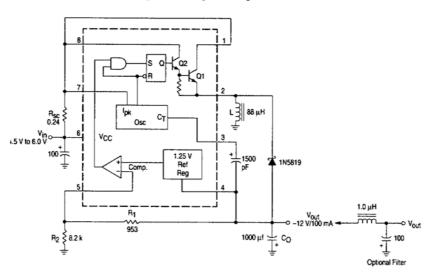
UTC

Figure 9. Step-Down Converter



Test	Conditions	Results	
Line Regulation	V _{in} = 15 V to 25 V, I _O = 500 mA	12 mV = ± 0.12%	
Load Regulation	V _{in} = 25 V, I _O = 50 mA to 500 mA	3.0 mV = ± 0.03%	
Output Ripple	V _{in} = 25 V, I _O = 500 mA	120 mVp-p	
Short Circuit Current	V _{in} = 25 V, R _L = 0.1 Ω	1.1 A	
Efficiency	V _{in} = 25 V, I _O = 500 mA	83.7%	
Output Ripple With Optional Filter	V _{in} = 25 V, I _O = 500 mA	40 mVp-p	

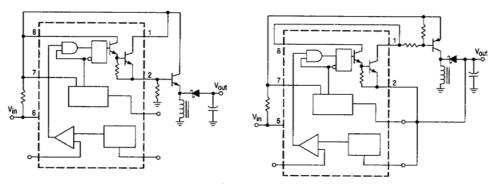
Figure 10. External Current Boost Connections for I_C Peak Greater than 1.5 A



10b. External PNP Saturated Switch

UTC

Figure 11. Voltage Inverting Converter



Test	Conditions	Results	
Line Regulation	V _{in} = 4.5 V to 6.0 V, I _O = 100 mA	3.0 mV = ± 0.012%	
Load Regulation	V _{in} = 5.0 V, I _O = 10 mA to 100 mA	0.022 V = ± 0.09%	
Output Ripple	V _{in} = 5.0 V, I _O = 100 mA	500 mVp-p	
Short Circuit Current	$V_{in} = 5.0 \text{ V}, R_L = 0.1 \Omega$	910 mA	
Efficiency	V _{in} = 5.0 V, I _O = 100 mA	62.2%	
Output Ripple With Optional Filter	V _{in} = 5.0 V, I _O = 100 mA	70 mVp-p	

Figure 12. External Current Boost Connections for I_C Peak Greater than 1.5 A

12a. External NPN Switch

12b. External PNP Saturated Switch

UTC

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC