ANALOG
DEVICES

TECHNICAL NOTE

ONE TECHNOLOGY WAYhP.O. BOX 9106hNORWOOD, MASSACHUSETTS 02062-9106h781/329-4700

A COMPACT ALGORITHM USING THE ADXL202
DUTY CYCLE OUTPUT
by Harvey Weinberg

Introduction

There are many applications where very high
accuracy measurement of acceleration is less
important than having a very simple and
compact software algorithm. This technical
note outlines a decode algorithm that measures
only the pulse width (T1) output of the
ADXL202 and translates it to degrees of tilt. In
this algorithm the period (T2) is not measured,
and no binary division is used.

In PIC assembly code a total of 199 bytes of
program memory and 18 bytes of data memory
are used. Even more efficient memory
(particularly data memory) usage can be had
with further optimization. A flow chart of the
algorithm is included so that the user may
modify it, or port it to any 4 or 8 bit
microcontroller with little effort.

A discussion of error sources inherent with
this method of measurement is included.

Principle of Operation

The ADXL202 outputs a Pulse Width Modulated
(PWM) signal proportional to acceleration.
Assuming that the scale factor is fixed at
12.5% per g;

acceleration = ((T1/T2)- (0g duty cycle))/12.5%

Where T1 is the pulse width and T2 is the
period of the ADXL202’s PWM output.

In a temperature stable environment we can
assume that the average value of T2 does not
change. Therefore we can rearrange the
formula for acceleration as;

acceleration = ((T1 - T1 at 0g)/T2)/12.5%

Over a range of + 35° of tilt each degree of tilt
is very close to 16mg. By choosing particular
values of T2, we can take advantage of very
easy modulo-2 division to minimize

computational requirements when calculating tilt
angle. For example;

T2 =500 ns
19 = (500 ) x (12.5%) = 62.5 ns
1 ns=(1g/62.5 ns) =16 mg

Using this technique, we simplify tilt angle
calculation down to a simple 1 s per degree
relationship. Any modulo-2 factor of 500 s
(e.g. 1000 ns, 2000 ns, etc.) may be used as
required.

Error Sources

Scale error is the most significant error source
encountered when using this algorithm. We
assume that the overall scale factor is 16mg
per s (or some modulo-2 multiple) in this
algorithm, but the actual scale factor may be
anything from 10% per g to 15% per g. This
results in a +8° error over +40° of tilt. Another
obvious error source is having the wrong value
for T2. A 1% error in T2 will result in a 1% error
in tilt angle resolution. These errors may be
eliminated by adding a trim to T2.

Scale factor error and T2 error may be trimmed
out together by adjusting T2 such that the 16mg
per ns (or some modulo-2 multiple) relationship
is maintained. This is expressed by the
following equation;

T2 =1/ ((scale factor) x (0.016))

So, for example, a scale factor of 10%;
T2=1/(0.10) x (0.016)) = 625 s

Adjusting T2 to 625 ns in this case would
eliminate the errors due to scale factor and T2

accuracy.

Since scale factor variation may result in such
large errors, trimming T2 by adding a



potentiometer in series with Rset as shown in
figure 1 is recommended. This trim may be
omitted in applications where one is interested
only in changes in tilt angle and errors due to
scale factor and T2 inaccuracy can be
tolerated.

T2 may drift over temperature by as much as a
few percent. This is very difficult to
compensate for using this type of algorithm. So
it is suggested that another algorithm be used in
situations where this is problematic.

Table 1. Tilt Angle Versus Error

Tilt Angle | g Generated | T1inus | Error
a 0.000 0 0
2 0.034 2 0
4 0.069 4 0
g 0.104 6 0
8 0.139 8 0

10 0.173 10 0
12 0.207 12 0
14 0.241 15 1
16 0.275 17 1
18 0.309 19 1
20 0.342 21 1
22 0.374 23 1
24 0.406 25 1
26 0.438 27 1
28 0.469 29 1
30 0.500 31 1
32 0.529 33 1
34 0.559 34 0
36 0.587| 36 0
38 0.615 38 0
40 0.642 40 0

The assumption that over + 35° of tilt, each
degree of tilt is very close to 16mg is, of
course, an approximation. At 1°, one degree of
tilt is 17.45mg. While at 35°, one degree of tilt is
14.38mg. While at first glance this looks like a
large source of error, it turns out that it only
works out to £1° of error over a +40° range of
tilt as shown in table 1.

There is normally a certain amount of “jitter” in
T2. Since the duty cycle does not change as a
result of this jitter, T1 changes proportionally
with T2. This error source in minimized in the
zero g calibration routine by taking the average
value of T1 over 16 readings. This is not done

in normal sampling to allow wider bandwidth
operation. If wide bandwidth is not a concern,
the user may wish to modify the algorithm to
include a similar averaging scheme in normal
sampling to minimize this error due to T2 jitter

The final source of error is from aliasing in the
Duty Cycle Modulator itself. As discussed in the
ADXL202 data sheet, the analog bandwidth
should be limited to 1/10 the Duty Cycle
Modulator frequency. So for a T2 period of
1000 ns, the analog bandwidth should be 100
Hz or less.

vadd
0@ [1—y——
o [1 Cch—
| 0 u l
J 50KW O [1— |V
20KW ye—N, 7\, —1—0 o L L
¢ 0 = Tvfilt  TXfilt
E| XA
\V) \V4

Figure 1. Circuit for Trimming T2

Program Listing and Flow Chart

The program listing and flow chart follow. The
program listing is available in text format
suitable for compilation on the Analog Devices
IMEMS web site at;

www.analog.com/iMEMS/library/apps.html



chkkkkkkkkkkkkkkkkkkhkkkkkkhhkkkkhhkkkkkhhkkkkkhkkkkkkhhkkkkkhkhkkkkkkkk
)

3********** 202_T1 ASM *kkkkkkkkkkhhkkkkkkhhkkkkkkhkkkkkhhkkkkk

)
chkkkkkkkkk . *kkkkkkkkkkhhkkkkkkhhkkkkkhkhkkkkkhhkkkkx
; REVISION: 0

RELEASED: SEPT. 16, 1998
REVISED:

; THIS SOFTWARE USES T1 MEASURMENTS ONLY TO DETERMINE ACCELERATION

; EXPERIENCED BY THE ADXL202. THE OUTPUT IS A ONE BYTE HEXIDECIMAL

; NUMBER PER AXIS OF RANGE 00 TO FF. THE MOST SIGNIFICANT BIT IS A SIGN

; BIT. A 1IN THE MSB INDICATES POSITIVE ACCELERATION. A0 IN THE MSB

; INDICATES NEGATIVE ACCELERATION. TO MAKE THE SOFTWARE AS COMPACT AS
; POSSIBLE, T2 IS ASSUMED TO HAVE A FIXED VALUE. VARIATION FROM THIS

; VALUE WILL RESULT IN ERROR. IT IS ALSO ASSUMED THAT THE FACTOR OF g/T1

; IS FIXED AS SHOWN IN THE TABLE BELOW. SO FOR TILT MEASUREMENT OVER

; +/- 40 DEGREES THIS ROUTINE IS ACCURATE TO APPROXIMATELY ONE DEGREE.

; SINCE THE OUTPUT IS A ONE BYTE NUMBER, RESONSE IS LIMITED TO +/- 1g.

T2 (IN uSEC) g/T1 (HOW MANY g FOR 1 uSEC)  uSEC/DEGREE
1000 0.008 2

2000 0.004 4
4000 0.002 8

8000 0.001 16
LIST P=16C62A 'SPECIFY PROCESSOR

Register Definitions

W EQU H'0000'
F EQU H'0001'

jmm--- Register Files

INDF EQU H'0000'

TMRO EQU H'0001
PCL EQU H'0002'
STATUS EQU H'0003'
FSR EQU H'0004'
PORTA EQU H'0005'
PORTB EQU H'0006'
PORTC EQU H'0007'
PCLATH EQU H'O00A'
INTCON EQU H'000B'
PIR1 EQU HO00C'
TMR1L EQU H'OOOE'
TMR1H EQU HOOOF

T1CON EQU H'0010'



TMR2 EQU H'0011'
T2CON EQU H0012'
SSPBUF EQU H0013'
SSPCON EQU H0014'
CCPR1L EQU H0015'
CCPR1H EQU H0016'
CCP1CON EQU H0017'
OPTION_REG EQU H'0081'
TRISA EQU H'0085'
TRISB EQU H'0086'
TRISC EQU H'0087
PIE1 EQU H'008C'
PCON EQU H'O08E'
PR2 EQU H'0092'
SSPADD EQU H'0093'
SSPSTAT EQU H'0094'
-mmm- STATUS Bits

IRP EQU H'0007'
RP1 EQU H'0006'
RPO EQU H'0005'
NOT_TO EQU H'0004'
NOT_PD EQU H'0003'
z EQU H'0002'
DC EQU H'0001'
C EQU H'0000'
j----- INTCON Bits

GIE EQU H'0007'
PEIE EQU H'0006'
TOIE EQU H'0005'
INTE EQU H'0004'
RBIE EQU H'0003'
TOIF EQU H'0002'
INTF EQU H'0001'
RBIF EQU H'0000'
--mm- PIR1 Bits

SSPIF EQU H'0003'
CCP1IF EQU H'0002'
TMR2IF EQU H'0001'
TMR1IF EQU H'0000'
j-mmm- T1CON Bits

T1CKPS1 EQU H'0005'
T1CKPS0 EQU H'0004'
T10SCEN EQU H'0003'
NOT_T1SYNC EQU H'0002'
T1INSYNC EQU H'0002' ;backward compatibility



TMR1CS EQU H0001
TMR1ON EQU  H0000
;----- T2CON Bits

TOUTPS3 EQU H0006
TOUTPS2 EQU H0005
TOUTPS1 EQU H0004
TOUTPSO EQU H0003
TMR20ON EQU H0002
T2CKPS1 EQU H0001
T2CKPS0 EQU  H0000
;----- SSPCON Bits

WCOL EQU H0007
SSPOV EQU H0006
SSPEN EQU H0005
CKP EQU H0004
SSPM3 EQU H0003
SSPM2 EQU H0002
SSPM1 EQU H0001
SSPMO EQU  H0000
;----- CCP1CON Bits

CCP1X EQU H0005
CCP1Y EQU H0004
CCP1M3 EQU H0003
CCP1M2 EQU H0002
CCP1M1 EQU H0001
CCP1MO EQU  H0000
;----- OPTION Bits

NOT_RBPU EQU  H0007
INTEDG EQU H0006'
TOCS EQU H0005
TOSE EQU H0004
PSA EQU H0003
PS2 EQU H0002
PS1 EQU H0001
PS0 EQU  H0000
;----- PIE1 Bits

SSPIE EQU H0003
CCP1IE EQU H0002
TMR2IE EQU H0001
TMR1IE EQU  H0000
;----- PCON Bits

NOT_POR EQU H0001



jmm=- SSPSTAT Bits

D EQU H'0005'
I2C_DATA EQU H'0005'
NOT_A EQU H'0005'
NOT_ADDRESS EQU H'0005'
DA EQU H'0005'
DATA_ADDRESS EQU H'0005'
P EQU H'0004'
I2C_STOP EQU H'0004'
S EQU H'0003'
I2C_START EQU H'0003'
R EQU H'0002'
I2C_READ EQU H'0002'
NOT W EQU H'0002'
NOT_WRITE EQU H'0002'
R W EQU H'0002'
READ WRITE EQU H'0002'
UA EQU H'0001'
BF EQU H'0000'
: RAM Definition
__ MAXRAM H'BF'

—_BADRAM H'08-H'09', HOD', H'18'-H'1F"
—_BADRAM H'88-H'89', H'8D', H'8F'-H'91',H'95'-H'9F"

; RAM EQUATES

T1X 1 EQU 20
T1X 0 EQU 21

ARGL EQU 22
ARGH EQU 23
ACCHI EQU 24
ACCLO EQU 25
T1Y_1 EQU 26
T1Y_0 EQU 27
T1XCAL_2 EQU 28
T1XCAL_1 EQU 29
T1XCAL_0 EQU 2A
T1YCAL 2 EQU 2B
T1YCAL_1 EQU 2C
T1YCAL_O EQU 2D
X_ACCEL EQU 2E
Y _ACCEL EQU 2F

T1CAL_COUNT EQU 30



ROTCNT

EQU 31

Configuration Bits

CP_ALL
CP_75
CP_50
CP_OFF
PWRTE_ON
_PWRTE_OFF
“WDT_ON
“WDT_OFF
“LP_OSC
“XT_OSC
“HS_osC
“RC_OSC

EQU H3F8F
EQU H3F9F
EQU H3FAF
EQU H3FBF
EQU H3FBF
EQU H3FB7'
EQU H3FBF
EQU H3FBB'
EQU H3FBC
EQU H'3FBD'
EQU H3FBE'
EQU H3FBF

;***** PROGRAM ***#*x
;7 MAIN PROGRAM *****
jor RESET ROUTINE *****

ORG 0000

GOTO PROG_START

GOTO PROG_START

GOTO PROG_START
GOTO PROG_START

RETURN
RETURN

PROG_START
CLRF
CLRF
CLRF
BSF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
BCF

MAIN_LOOP

PORTA
PORTB
PORTC
STATUS,5
B11111111'
TRISA
B11111111'
TRISB
B11111111'
TRISC
STATUS,5

CALL CHECK CAL

CALL
MOVF

READ_T1
T1X_1,0

;GO TO START OF PROGRAM

; THESE COMMANDS ARE HERE TO
;KICK THE PROGRAM COUNTER PAST

;THE INTERRUPT VECTORS IN CASE
;OF A GLITCH

;RAM PAGE 1
;SET UP THE I/O PORTS
;PORT A, ALL INPUTS

;PORT B, ALL INPUTS

;PORT C, ALL INPUTS

;SET RAM PAGE 0

;CHECK IF CALIBRATION ROUTINE
;SHOULD BE PERFORMED

;READ ACCELERATION
;CHECK ACCELERATION POLARITY



SUBWF
BTFSS
GOTO
BTFSS
GOTO
MOVF
SUBWF
BTFSS
GOTO
ACCX_LT_ZX
MOVF
MOVWF
MOVF
MOVWF
MOVF
MOVWF
MOVF
MOVWF
CALL
BCF
RRF
RRF
MOVWF
BCF
GOTO
ACCX_GT_ZX
MOVF
MOVWF
MOVF
MOVWF
MOVF
MOVWF
MOVF
MOVWF
CALL
BCF
RRF
RRF
MOVWF
BSF

DO_Y_AXIS
MOVF
SUBWF

BTFS S

GOTO

BTFS S

GOTO
MOVF
SUBWF
BTFSS
GOTO
ACCY_LT ZY
MOVF

T1XCAL_1,0
STATUS,C
ACCX_GT_ZX
STATUS,Z
ACCX_LT_ZX
T1X_0,0
T1XCAL_0,0
STATUS,C
ACCX_GT_ZX
"X ACCELERATION IS NEGATIVE

T1XCAL_0,0
ACCLO
T1XCAL_1,0
ACCHI
T1X_0,0
ARGL
T1X_1,0
ARGH
SUB_16X16
STATUS,C ‘DIVIDE BY 2 (1 SHIFT) IF T2=1000uS
ACCHI,1 ‘DIVIDE BY 4 (2 SHIFTS) IF T2=2000uS
ACCLO,0 ‘DIVIDE BY 8 (3 SHIFTS) IF T2=4000uS
X_ACCEL
X_ACCEL,7 :CLEAR THE SIGN BIT AS ACCEL IS -
DO_Y_AXIS

:X ACCELERATION IS POSITIVE
T1X_0,0
ACCLO
T1X_1,0
ACCHI
T1XCAL_0,0
ARGL
T1XCAL_1,0
ARGH
SUB_16X16
STATUS,C ‘DIVIDE BY 2 (1 SHIFT) IF T2=1000uS
ACCHI,1 ‘DIVIDE BY 4 (2 SHIFTS) IF T2=2000uS
ACCLO,0 ‘DIVIDE BY 8 (3 SHIFTS) IF T2=4000uS
X_ACCEL
X_ACCEL,7 ‘SET THE SIGN BIT AS ACCEL IS +

T1Y_1,0 :CHECK FOR ACCELERATION POLARITY
T1YCAL_1,0
STATUS,C
ACCY_GT_ZY
STATUS,Z
ACCY_LT ZY
T1Y_0
T1YCAL_0,0
STATUS,C
ACCY_GT_ZY
'Y ACCELERATION IS NEGATIVE
T1YCAL_0,0



MOVWF ACCLO

MOVF T1YCAL_1,0
MOVWF ACCHI
MOVF T1Y_0,0
MOVWF ARGL
MOVF T1Y_1,0
MOVWF ARGH
CALL SUB_16X16
BCF STATUS,C ;DIVIDE BY 2 (1 SHIFT) IF T2=1000uS
RRF ACCHI1 ;DIVIDE BY 4 (2 SHIFTS) IF T2=2000uS
RRF ACCLO,0 ;DIVIDE BY 8 (3 SHIFTS) IF T2=4000uS
MOVWF Y_ACCEL
BCF Y_ACCEL,7 ;CLEAR THE SIGN BIT AS ACCEL IS -
GOTO MAIN_LOOP
ACCY_GT_ZY ;Y ACCELERATION IS POSITIVE
MOVF T1Y_0,0
MOVWF ACCLO
MOVF T1Y_1,0
MOVWF ACCHI
MOVF T1YCAL_0,0
MOVWF ARGL
MOVF T1YCAL_1,0
MOVWF ARGH
CALL SUB_16X16
BCF STATUS,C ;DIVIDE BY 2 (1 SHIFT) IF T2=1000uS
RRF ACCHI1 ;DIVIDE BY 4 (2 SHIFTS) IF T2=2000uS
RRF ACCLO,0 ;DIVIDE BY 8 (3 SHIFTS) IF T2=4000uS
MOVWF Y_ACCEL
BSF Y_ACCEL,7 ;SET THE SIGN BIT AS ACCEL IS +
GOTO MAIN_LOOP
;e SUBROUTINES *****
CHECK_CAL ;THIS SUBROUTINE READS THE "CAL" PIN (RA4). IF IT

IS HI, A SIMPLE CALIBRATION ROUTINE IS PERFORMED
;TO MEASURE THE ZERO g VALUE OF T1. 16 SAMPLES OF
;T1 ARE AVERAGED (BY ADDING TOGETHER AND THEN
;DIVIDED BY 16) TO INCREASE ACCURACY.

BTFSS PORTA,3 ‘IS RA4 HI
RETURN ‘IF NOT THEN NO CAL ROUTINE
CLRF T1XCAL_2 IF YES THEN ACQUIRE CAL DATA
CLRF T1XCAL_1 'START BY CLEARING ALL
CLRF T1XCAL_O ‘OF THE CALIBRATION REGISTERS
CLRF T1YCAL_2
CLRF T1YCAL_1
CLRF T1YCAL O
MOVLW 10 'SET AVERAGING COUNTER TO 16
MOVWF T1CAL_COUNT

ZCAL_A
MOVF T1CAL_COUNT,1  ;TESTIF 16 PASSES HAVE OCCURED BY
BTFSC STATUS,Z TESTING IF THE LOOP COUNTER =0
GOTO ZCAL_B

CALL READ_T1 ;READ T1



MOVF T1X_0,0 ;DO AVERAGING CALCULATIONS OF T1X

ADDWF T1XCAL_0,1
BTFSS STATUS,C :CHECK IF A CARRY WAS GENERATED
GOTO ZCAL_C
MOVLW 01 IF A CARRY WAS GENERATED INCREMENT
ADDWF T1XCAL_1
BTFSC STATUS,C :CHECK IF A CARRY WAS GENERATED
INCF T1XCAL_2,1
ZCAL_C
MOVF T1X_1,0
ADDWF T1XCAL_1
BTFSC STATUS,C :CHECK IF A CARRY WAS GENERATED
INCF T1XCAL_2
MOVF T1Y_0,0
ADDWF T1YCAL_0,1 ‘DO AVERAGING CALCULATIONS OF T1Y
BTFSS STATUS,C
GOTO ZCAL_D
MOVLW 01
ADDWF T1YCAL_1
BTFSC STATUS,C
INCF T1YCAL_2,1
ZCAL_D
MOVF T1Y_1,0
ADDWF T1YCAL_1
BTFSC STATUS,C
INCF T1YCAL_2
DECF T1CAL_COUNT ‘DECRIMENT LOOP COUNTER
GOTO ZCAL_A LOOP
ZCAL_B
MOVLW 04 ‘DIVIDE T1CAL BY 16
MOVWF ROTCNT
ZCAL_E
RRF T1XCAL_2,1
RRF T1XCAL_1,1
RRF T1XCAL_0,1
RRF T1YCAL_2,1
RRF T1YCAL_1,1
RRF T1YCAL_0,1
MOVLW 01
SUBWF ROTCNT, 1
BTFSS STATUS,Z
GOTO ZCAL_E
RETURN
READ_T1 “THIS SUBROUTINE ACQUIRES T1X AND T1Y

;TIXIS INREGISTERS T1X_1,T1X 0
;T1Y ISINREGISTERS T1Y_1,T1Y_0

CLRF T1CON ;SET TIMER 1 TO ZERO
CLRF TMR1L
CLRF TMR1H
EDGE1
BTFSC PORTB,2 ;WAIT FOR RISING EDGE

GOTO EDGE1



EDGE2

EDGE3

BTFSS PORTB,2

GOTO EDGE2

BSF T1CON,TMR10ON ;TURN TIMER 1 ON

NOP ;WAIT 3 uSEC TO DE- GLITCH

NOP

NOP

BTFSC PORTB,2 ;LOOK FOR FALLING EDGE

GOTO EDGE3

BCF T1CON,TMR10ON ;STOP TIMER 1 TO READ RELIABLY

MOVF T MR1H,0
MOVWF T1X 1

MOVF TMR1L,0
MOVWF T1X 0
CLRF TMR1L ;CLEAR THE TIMER RESULT REGISTERS
CLRF TMR1H ;IN PREPARATION FOR T1Y CAPTURE
EDGE4
BTFSC PORTB,1 ;LOOK FOR THE RISING EDGE ON
GOTO EDGE4 ;Y CHANNEL
EDGE5
BTFSS PORTB,1
GOTO EDGE5
BSF T1CON,TMR10ON ;TURN TIMER 1 BACK ON AT RISING EDGE
NOP ;WAIT 3 uSEC TO DE-GLITCH
NOP
NOP
EDGE6
BTFSC PORTB,1 ;LOOK FOR FALLING EDGE SIGNIFYING
GOTO EDGE6 ;THE END OF T1Y
BCF T1CON,TMR10ON ;STOP TIMER 1 TO READ END OF T1Y
MOVF TMR1H,0
MOVWF T1Y_1
MOVF TMR1L,0
MOVWF T1Y_0
RETURN
SUB_16X16 ;THIS SUBROUTINE PERFORMS A 16 BIT BY 16 BIT
;SUBTRACTION.

:(ACCHI,ACCLO)=(ACCHI,ACCLO)-(ARGH,ARGL)
COMF ARGL

INCF ARGL

BTFSC STATUS,2

DECF ARGH

COMF ARGH ;NEGATE ZERO
MOVF ARGL,W ;THEN ADD
ADDWF ACCLO,F

BTFSC STATUS,W

INCF ACCHI

MOVF ARGH,W

ADDWF ACCHI,F

RETURN

chkkkkkkkkkkkhkkkkkkkhkhkhkhhhkhkkhkkhhhkhhkhhkhhkhkhhhkhhhhkkhkhhkhhkkkhkkkhkkkkkx



END



RA4= — P T1CAL_COUNT =16

1 v

N CLEAR T1XCAL
AND T1YCAL
<€
READ T1X
¢ IS
Y
READ T1Y —— T1CAL_COUNT ,——
¢ - 0
7N
| (~)
s N/
N READ T1X
— TIX <
TIXCAL v
READ T1Y
ACCHI,ACCLO = T1X - TIXCAL ACCHI,ACCLO = T1XCAL - T1X TIXCAL =
TIXCAL + T1X
X_ACCEL = (ACCHI,ACCLO)/2 X_ACCEL = (ACCHI,ACCLO)/2 ¢
TIYCAL =
Y Y TIYCAL + T1Y
SET MSB OF X_ACCEL CLEAR MSB OF X_ACCEL ¢
' DECRIMENT
TICAL_COUNT —
N

(®)



\J

ACCHI,ACCLO=T1Y - T1YCAL

\/

Y_ACCEL = (ACCHI,ACCLO)/2

\j

SET MSB OF Y_ACCEL

)

\J

IS
T1Y <
T1YCAL

(a)

N

v

TIXCAL =
T1XCAL/16

v

T1YCAL =
T1YCAL/16

v

RETURN

\/

ACCHI,ACCLO=T1YCAL - T1Y

\J

Y_ACCEL = (ACCHI,ACCLO)/2

\J

CLEARMSB OF Y_ACCEL

~

(¢)



